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PREFACE TO THE FIRST EDITION

The subject of electronics, and in particular the electronic properties of materials,
is one which has experienced unprecedented growth in the last thirty years. The
discovery of the transistor and the subsequent development of integrated circuits
has enabled us to manipulate and control the electronic properties of materials to
such an extent that the entire telecommunications and computer industries are
dependent on the electronic properties of a few semiconducting materials. The
subject area is now so important that no modern physics, materials science or
electrical engineering degree programme can be considered complete without a
significant lecture course in electronic materials. Ultimately the course require-
ments of these three groups of students may be quite different, but at the initial
stages of the discussion of electronic properties of materials, the course require-
ments are broadly identical for each of these groups. Furthermore, as the subject
continues to grow in importance, the initial teaching of this vital subject needs to
occur earlier in the curriculum in order to give the students sufficient time later
to cover the increasing amount of material.

It is with these objectives in mind that the present book has been written. It is
aimed at undergraduates who have only an introductory knowledge of quantum
mechanics. The simplified approach used here enables the subject to be introduced
earlier in the curriculum. The goal at each stage has been to present the principles
of the behaviour of electrons in materials and to develop a basic understanding
with a minimum of technical detail. This has resulted in a discussion in breadth
rather than depth, which touches all of the key issues and which provides a secure
foundation for further development in more specialized courses at a later stage.
The presentation here should be of interest to two groups of students: those who
have a primary interest in electronic materials and who need an introductory text
as a stepping-stone to more advanced texts; and those whose primary interest lies
elsewhere but who would nevertheless benefit from a broad, passing knowledge of
the subject.

As with the earlier textbook, Introduction to Magnetism and Magnetic Materials
(1991) the subject area under discussion here is truly multidisciplinary, spanning
the traditional subject areas of physics, electrical engineering and materials
science. In writing this book I have striven to keep this in mind in order to
maintain the interest of a wider audience. Therefore some of the treatment will
seem relatively easy for one group of students while relatively hard for another.
Over the entire book, however, I think that the general mix of subject areas leads
to a text that is equally difficult for these three groups of students. Chapters 1-5
could easily be included in a traditional solid-state physics course and should be
very familiar to physicists. However Chapters 6-10 will appeal more to materials
scientists since they will be more familiar with dealing with meso- and macro-
scopic properties. Finally Chapters 11-15 discuss the functional performance of
these materials in technological applications which are likely to be of most interest
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PREFACE TO THE FIRST EDITION

to electrical engineers. These chapters provide a rapid introduction to five impor-
tant applications of electronic materials, each of which could be further developed
in a separate advanced course. Also, as in Introduction to Magnetism and Magnetic
Materials, the early chapters of this book contain a number of key exercises for the
student to attempt. Completed worked solutions are given at the back of the book.
It has been my experience that this is much more useful than simply giving a
numerical answer at the back, since if you do not get the problem exactly right
under those conditions, you cannot easily find out where you went wrong!

On completion of the text the reader should have gained an understanding of
the behaviour of electrons within materials, an appreciation of how the electrons
determine the magnetic, thermal, optical and electrical properties of materials and
an awareness of how these electronic properties are controlled for use in a number
of important technological applications. I hope that the text will provide a useful
introduction to more detailed books on the subject and that it will also provide the
background for developing the interest of students in this fascinating subject at an
early stage in their careers.

Finally, I would like to acknowledge the assistance of several friends and
colleagues who have helped me in writing this book. In particular thanks go to
M. F. Berard, F. J. Friedlaender, R. D. Greenough, R. L. Gunshor, J. Mallinson,
R. W. McCallum, R. E. Newnham, S. B. Palmer and A. H. Silver.

DJ, Ames, Iowa

ACKNOWLEDGEMENTS
I am grateful to those publishers credited in captions for permission to reproduce
some of the figures in this book.
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PREFACE TO THE SECOND EDITION

Electronic materials provide the basis for many of our 'high tech' industries such as
computers, semiconductors, data storage, electronic devices, sensors and actuators.
In particular, the range of available materials and their technological applications,
have made enormous progress in the seven years since the first edition of this book
was published. So it is timely to bring the book up to date. I have chosen to
maintain the same basic layout as in the first edition. The early chapters contain the
basic concepts and are, in places, rather abstract and mathematical. The later
chapters describe applications and are more descriptive and practical. In this way,
I have deliberately sought to maintain a blend and balance between a need for
basic understanding of ideas and a description of how these are incorporated
into applications.

The underlying physics and physical descriptions of these materials change only
slowly with time, so that the information contained in the early chapters of the
first edition of the book has remained as relevant to today as it was seven years
ago. Therefore in Chapters 1-10, I have chosen simply to expand the number of
exercises with complete worked solutions to offer a wider range of examples that
will deepen knowledge of the underlying physical basis for understanding these
materials. These examples have been used over the last few years by students at
Iowa State University to consolidate concepts presented in lecture classes. In a few
instances additional information on topics such as anharmonicity and Gruneisen
parameters, Bragg reflection at Brillouin zone boundaries and more detailed
descriptions of charge carriers in the conduction and valence bands at semi-
conductor junctions have been added to increase the scope of the chapters where it
seemed appropriate.

The technological applications in the areas of semiconductor materials and
devices, computer technology, data storage and magnetics have all seen remark-
able progress since the first edition. Therefore in the later chapters of the book that
deal with technological applications, Chapters 11-15, it was essential to provide
more up-to-date information. In microelectronics there has been an expansion of
the number of materials that are available and now being used in technological
applications. The continual reduction of device and feature sizes in microelec-
tronics has allowed a dramatic increase in the number of components on a single
semiconductor chip. In optoelectronics, particularly the applications to data com-
munication, there have been important developments both on the small scale (local
computer communications) and the large scale (intercontinental telecommunica-
tions). Once again, the introduction of new materials with improved performance
over previously available materials has been the enabling technology. In some
cases, optoelectronic materials with completely new characteristics (such as the
optical amplifier materials based on rare-earth doped silicon) have been intro-
duced. In superconductivity, after the surge of interest in the high-temperature
ceramic superconducting materials prior to the first edition, the major advances
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PREFACE TO THE SECOND EDITION

subsequently have been in applications, rather than in the identification of new
materials. So new sections on superconducting wires, superconducting energy
storage devices, and superconducting transformers, motors and generators have
been added. In magnetic recording the rate of progress has accelerated since 1994
so that today, as a result of the availability of new multi-layered giant magneto-
resistive materials, data storage densities are doubling every 9 months instead of
every two years as they were in the early 1990s. In 1994 a typical personal com-
puter came with a hard disk drive that had 500 Mbytes of capacity. In the year 2000
a typical computer came with a hard disk drive that had about 80 Gbytes of mem-
ory. The availability of new magnetic materials has made these advances possible.
Data storage technology has moved so far since the first edition that the whole
chapter on magnetic recording had to be rewritten. In the area of transducers,
sensors and actuators new ferroelectric thin film materials have been developed,
and applications have been found in dynamic random access memory (DRAM) and
nonvolatile ferroelectric random access memory (FRAM) and microelectronic
mechanical machines (MEMs).

In selecting material for this new edition I have attempted to focus on the
advances in major technological areas. Clearly, in order to keep any book on such
an important and diverse subject as electronic materials to a reasonable size, many
interesting areas must necessarily be left to others. However, I believe that the
information contained in this second edition will provide a sound introduction to
this subject. The essential concepts that allow understanding of these materials is
included, together with a description of the most important materials and their
technological applications.

DJ, Ames, Iowa

ACKNOWLEDGEMENTS
I would like to take this opportunity to thank various friends and colleagues
who have helped to make this second edition possible, either through helpful dis-
cussions, indicating corrections to the original book or through suggestions for
topics to include. I particularly would like to thank M. J. Sablik, J. E. Snyder,
F. J. Friedlaender, H. Hauser, D. L. Atherton, R. D. Greenough, F. Salas and
D. P. Cann.
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FOREWORD FOR THE STUDENT

The objective of this book is to present an introduction to the electronic properties
of materials that is broad in its coverage but not exhaustive. The book focuses
on the understanding of a few basic principles of the behaviour of electrons in
materials and uses them to provide a description of a wide range of phenomena
including magnetic, electrical, thermal and optical properties of materials. I have
also given a number of historical references in the text, particularly in the early
chapters. It seems to me that an appreciation of the historical development of a
subject helps the overall understanding, apart from which it is interesting to know
who originally developed the underlying ideas and even to re-read some of these
landmark papers.

It has been my experience that, with the possible exception of the prospective
specialist in solid-state physics, the majority of students do not benefit greatly
from being confronted with a mass of detailed results arising from the theory of
electrons in solids. This can come later for the intending specialist. In introducing
this subject it seems more useful to present a few key results based on relatively
simple models, which give a general feel for the behaviour of electrons in materials
and how they contribute to the observed properties. These models themselves
need not be particulary complex to be useful. For example, the basic premises of
both the classical Drude model and the Sommerfeld model are quite far from
reality. Yet the predictions that they make about the properties of the material
contain some of the essential known results, for example the Wiedemann-Franz
law and the electronic contribution to the heat capacity.

Therefore, the general approach taken here has been to introduce and discuss
the consequences of such simple models which can be used to guide our thinking.
We begin on the level of a few electrons subjected to an electrostatic potential due
to the rest of the material. Subsequently the bulk properties of materials are con-
sidered and the phenomena are related to the earlier discussion of the behaviour
of electrons. Finally several key applications are discussed, in which the elec-
tronic properties of materials play the central role in determining the suitability
of materials for these applications. In particular the areas of microelectronics,
optoelectronics, superconductivity, magnetism and piezoelectricity are examined.
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1PROPERTIES OF A MATERIAL CONTINUUM

OBJECTIVE
The objective of this chapter is simply to remind ourselves of the macroscopic
properties of materials and to point out that in uses of electronic materials we
are mostly interested in these bulk properties, which are the ones that we usually
measure. In order to measure these properties it is necessary that we also give
exact definitions of the various quantities. The microscopic properties are of
interest because they help us to explain the variation of the macroscopic prop-
erties with external conditions, including any interrelationships which exist
between the macroscopic properties. Once we have achieved an understanding
of the relationship between macroscopic properties and the microscopic struc-
ture of a material it becomes possible to control the structure in order to
produce materials with specific desired properties.

1.1 RELATIONSHIPS BETWEEN MACROSCOPIC PROPERTIES
OF MATERIALS

How do the electrical and thermal properties of a material relate to its optical
properties?
On the everyday scale our means of interacting with a material generally rely on its
macroscopic properties, and these, as a rule, are based on the assumption that the
material is a classical continuum. For example, it is well known that, generally,
materials with highly reflecting surfaces are both good electrical and thermal con-
ductors, and conversely materials with dull surfaces are not. Furthermore, highly
reflecting materials, which are usually metals, generally have similar mechanical
properties such as high ductility. These observations are so familiar from our
everyday experience that they do not even give us pause for thought, but we
should ask why there is a correlation between these apparently unrelated proper-
ties of materials. However, the macroscopic continuum model of materials gives
no indication what the underlying common mechanism might be.

The unexplained relationships between the macroscopic properties of materials
form the starting point for our investigation of the electronic properties of mate-
rials. It seems that there must be some common underlying mechanism that is
responsible for all three properties, optical, electrical and thermal, and that this
causes the close relationship between them. In fact the correlation between the
behaviour of the various properties of the materials can not be explained without
some understanding of the structure of the materials and this involves the
development of microscopic theories of the atomic and electronic structure inside
the materials. The relationship between the structure of matter and its physical
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CHAPTER 1 PROPERTIES OF A MATERIAL CONTINUUM

properties has been treated in detail using only classical physics to describe the
materials in the excellent work of Landau et al. [1].

We will begin with some simple definitions of macroscopic properties and then
consider some of the well-known macroscopic laws obeyed by materials. Our goal
will then be to provide a conceptual framework for understanding these properties
and relationships.

1.1.1 Measurable properties of materials
How do we characterize materials in terms of measurable quantities?
In order to measure the properties of a material we do not need to know anything
about its internal structure. The properties of interest depend, of course, on the
application under consideration, but broadly we are usually interested in one or
more of the following categories: mechanical, electrical, optical, thermal and
magnetic properties. In most cases the materials properties are obtained as a result
of measurements of two quantities, which by themselves do not represent
materials properties.

Often, a measurement is made of the response of a material, in terms of a state
parameter (e.g. strain, change in temperature or current density), to the influence
of an external effect or field parameter (e.g. stress, amount of heat input or electric
field strength). The quotient of these two measurements is then the material
property (e.g. elastic modulus, specific heat capacity or electrical conductivity).
Compilations of the various macroscopic properties of materials have been made
by many authors, of which the most comprehensive is that by Lide [2].

1.1.2 Bulk properties of materials
How can these macroscopic properties be explained?
These bulk, continuum properties of materials are almost exclusively what we are
really concerned with in using the materials, because these are the properties
which can be directly measured. However, explanation of the behaviour of these
properties as a function of external conditions, such as temperature, field or
frequency of incident electromagnetic radiation, for example, requires a deeper
insight into the underlying physical mechanisms.

Although these properties are often documented in great detail for materials,
the macroscopic continuum picture gives no explanation of why, for example,
copper is a better conductor than glass; why iron is ferromagnetic but manganese
is not; why aluminium conducts heat better than sulphur and so on. In order to
explain these properties of materials we must look inside the material and try
to develop a better understanding of what is happening. These explanations are
founded on a description of microscopic rather than macroscopic effects.

1.1.3 Dependence of properties on the environment
Are the material 'constants9 really invariant when the external conditions change?
The macroscopic properties of materials, such as Young's modulus, thermal
conductivity and electrical conductivity and magnetic permeability, do not remain

4



MECHANICAL PROPERTIES

constant, however. The optical parameters k and n are dependent on the wave-
length of incident electromagnetic radiation, permeability is dependent on
temperature, and so is electrical conductivity.

The elastic modulus of gadolinium for example shows unusual behaviour close
to 293 K. The variation of the reflectivity of silver with energy of incident
electromagnetic radiation reveals a drastic change at about 4 eV. The specific heat
of nickel reveals anomalous behaviour at around 600 K, and the magnetic
susceptibility of manganese fluoride MnF2, shows an anomaly in the vicinity of
70 K. All of these show variations in bulk properties that lie beyond explanation
on the basis of the continuum theory of matter.

These examples show interesting features in some of the bulk properties of these
materials. In order to explain these observations it is necessary to consider the
properties of the elementary constituents of these materials, that is the atoms and
particularly the electrons. Before doing this, however, we will look briefly at a few
definitions. These are used to quantify the material properties in which we will be
interested and which we will need to refer to throughout this book.

1.2 MECHANICAL PROPERTIES
How do we quantify the mechanical behaviour of materials?
The mechanical properties broadly encompass the elastic, plastic and acoustic
properties of a material. These may be quantified by the following: the bulk modu-
lus EB, Young's modulus £Y and the shear modulus Es- (We use these symbols to
avoid possible confusion between the elastic moduli, particularly Young's modulus
which is often given the symbol E, and the energy which we use extensively later,
and which also takes the symbol £.)

1.2.1 Elastic moduli
How does a material respond to stress?
In a material that is isotropic the elastic properties can be completely specified in
terms of two elastic moduli, the longitudinal (or Young's) modulus and the
transverse (or shear) modulus. Other elastic properties, such as Poisson's ratio, can
be completely defined in terms of a combination of these two moduli.

Young's modulus, is a material property obtained from measurement of
two quantities; the applied longitudinal stress a and the resulting strain e in the
same direction. Since by Hooke's law stress is proportional to strain for small
displacements,

£Y = stress =a>

strain e\\

The shear modulus is a material property obtained from measurement of two
quantities, the applied shear stress and the resulting shear strain,

shear stress 0j_
£s = -¡ — = —. (1-2)shear strain C_L

5
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CHAPTER 1 PROPERTIES OF A MATERIAL CONTINUUM

The following table gives values of the elastic Young's modulus for various
materials.

Table I.I Elastic moduli of various materials.

Material

Lead
Glass
Iron
Aluminium
Nickel
Steel
Tungsten

Elastic modulus
EY(Pa)

O.I6x 10"
0.55 x 10"
0.91 x 10"
0.70 x 10"

2.1 x 10"
2.0 x 10"
3.6x 10"

Shear modulus
Es (Pa)

0.06 x 10"
0.23 x 10"
0.70 x 10"
0.24 x 10"
0.77 x 10"
0.84 x 10"

l .5x 10"

These elastic 'constants' are not actually constant but can vary quite markedly
with temperature, for instance. An example of interesting temperature depen-
dence of the elastic modulus in gadolinium is shown in Fig. 1.1. Although the
elastic moduli are usually determined principally by the lattice potential between
atoms we will see later that this anomalous behaviour of the elastic modulus of
gadolinium at 293 K and 225 K is the result of reorganization of the electronic
magnetic moments during magnetic phase transitions. The electronic interactions
perturb the interatomic potential, and at magnetic phase transitions this can cause
unusual behaviour of the elastic moduli.

7-50

7-38

7-26

7-14

7-02
200 225 250 275 300 325

Temperature (K)

Figure I.I Variation of the elastic modulus of the metal gadolinium with temperature [3].

1.3 ELECTRICAL PROPERTIES
How do we quantify the electrical behaviour of materials?
In the case of the electrical properties, we are often concerned with the conduc-
tivity. This determines, for example, whether we are dealing with an electrical

6
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conductor or insulator. In some cases we may be concerned with the electrical
polarization as determined by the dielectric constant or permittivity, and in others
with the dissipation of electrical energy under ac conditions (eddy currents). The
electrical properties of principal interest are: the electrical conductivity a and
the dielectric constant e.

1016T
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polyethylene
j H — m f L f t r t f toKunonu
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i
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COc

boron

ferrie (CuZnFe4Oa)
slicon(pure)

silicon (doped, transistor grade)

germanium (pure)

germanium (doped, transistor grade)

ferries

germanium (tunnel diode grade)

stainless steel, nfchrome, bismuth —co
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nickel, tungsten, iron £
•jO"8 -L silver, copper, aluminium

Figure 1.2 Range of resistivities for various materials, including metals, semiconductors and insulators.
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CHAPTER 1 PROPERTIES OF A MATERIAL CONTINUUM

1.3.1 Ohm's law
Is there a relationship between electric current and electric field strength in a
material?
The well-known Ohm's law deserves a mention because it provides a test of how
well the electronic models of materials perform. It states that the current density/
is related to the electric field £ in a material by the relationship

/ = <* (1-3)

We use £ here to distinguish the electric field from energy which is denoted later
by E and <j is the electrical conductivity. Alternatively, if the voltage across a
material is V V and the current passing is /A then,

V =  (1.4)

where R is the resistance of the material. Figure 1.2 shows a range of resistivities
for various materials.

1.3.2 Electrical conductivity
How is electric charge transmitted in a material?
The electrical conductivity is the amount of electric charge transferred per unit
time Aq/àt across unit cross-sectional area A under the action of unit potential
gradient dV/dx

(dq/ai)
ff = A<Wte)' (1'5)

Table 1.2 Numerical values of electrical resistivities and conductivities
of various materials at room temperature.

Material

Sulphur
Diamond
Glass
Boron
Silicon
Germanium
Gadolinium
Mercury
Stainless steel
Iron
Platinum
Nickel
Zinc
Tungsten
Aluminium
Gold
Copper
Silver

p(Qm)

2 x icr15

. 1 x I012

O.I x I09

17 x I03

0.35 x I03

10 x I0~6

l.4x I0~6

I .Ox I0~6

0.75 x IO-6

100 x IQ-9

100 x IO-9

83 x I0~9

59 x IO-9

55 x IO-9

28.5 x IO-9

24.4 x I0~9

17 x IO-9

17 x IO-9

«7(0-' m-')

0.5 x IQ-'5
1 x I0~12

10 x IO-9

5.9 x I0~6

2.9 x I0~3

O.I x I06

0.7 x I06

I .Ox I06

l .3x I06

10 x I06

10 x I06

12 x I06

16.9 x I06

18 x I06

35 x I06

41 x I06

59 x I06

63 x I06

8
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and from Ohm's law
/ current density

& = - = —; :—r. t j (1.6)
£ electric held

The electrical conductivities of materials exhibit probably the widest range
of variations of all material properties: 23 orders of magnitude between the con-
ductivities of copper and sulphur, as shown in Table 1.2. Macroscopic continuum
theory gives no reason for this variation.

1.3.3 Dielectric properties
How does a nonconducting material respond to the presence of an external elec-
tric field?
The dielectric constant or permittivity e is a material property which relates
the amount of electric polarization (charge displacement) P of a material under the
action of an electric field f

The term P/£Q£ is known as the electric susceptibility xe- Materials with high per-
mittivity, and hence high electric susceptibility, give a large electric polarization
for a given field strength. Values of the relative permittivity £r can be as high as
7000 in barium titanate, but in most cases are much lower, for example the
relative permittivity of water is 80. The relative permittivity of a material can
also be determined from the capacitance C of a condensor with the material as
dielectric, compared with that of the same condensor CQ with a vacuum in place of
the material:

^r=^-- (1-8)
Co

Material ë Table 1.3 Dielectric properties of various
materials.

Copper oo
Barium titanate 7000
Distilled water 80
Inorganic glasses 6-20
Alumina 9
Polyester 4
Polystyrene 2
Air I
Vacuum I

The dielectric strength is a material property which represents the resistance of a
material to electrical breakdown (i.e. spontaneous electrical conduction) under the
action of a strong electric field. It is sometimes called the breakdown potential,
and is measured in volts per metre. Below this field strength the material is an
insulator, and above it is a conductor. Unfortunately this property varies widely

9
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CHAPTER 1 PROPERTIES OF A MATERIAL CONTINUUM

even among materials which are nominally identical. Therefore, it is not reliable to
quote values for particular materials, although it is typically in the range of
106 Vm"1 for dielectrics.

1.4 OPTICAL PROPERTIES
How do we quantify the optical behaviour of materials?
The optical properties of a material tell us how the material interacts with incident
electromagnetic waves. These properties can be expressed in terms of two optical
constants. Often, the refractive index n and the extinction coefficient k are used,
both of which change with the wavelength of the incident light. Alternatively, we
can define the optical properties using the reflectance R together with one of the
above. We can also use instead the real and imaginary components of the dielectric
constant e. These five quantities are the principal optical properties of interest,
and all five change with the frequency of the incident electromagnetic waves.

1.4.1 Refractive index and Snell's law
How does the speed of light in a material determine its change of direction at
an interface?
The refractive index of a material is the ratio of wavelength, or phase velocity, of
light in a vacuum to that in the material. It is a material property which can be
obtained, in principle, solely from the measurement of the speed of light in a
material, although this is never attempted in practice:

speed of light in vacuum
speed of light in material*

The refractive index of a transparent material is usually determined on the basis
of the measurements of two angles. 6\ is the angle of incidence of a light beam at
the surface of the material and 0r is the angle of refraction of the light beam inside
the material:

oî« A

(1.10)

In fact, the refractive index is frequency dependent, which is why a prism can
be used to split white light into different colours (dispersion on the basis of
frequency).

1.4.2 Extinction coefficient k and the Lambert-Beer law
How is light energy absorbed by a material?
The optical extinction coefficient k is defined as the fractional rate of decrease of
light intensity d//J in a material per unit path length multiplied by A/4?r where A is
the wavelength

'-fiifV <""4?r/ \oxj

10
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This is a dimensionless material property, but it is also dependent on the fre-
quency of light. We can also define an attenuation coefficient a which represents
the rate at which the intensity of light decays with depth in a material,

°=-75r-;IO*(¿)' (1-12)

47T&
and the attenuation coefficient in units of m"1 is then given by a = ——. We arrive

A
therefore at the equation

/ = /0exp(-ax), (1.13)

which is the law attributed variously to either Lambert or Beer.

1.4.3 Reflectance
How do we quantify the amount of light reflected at an interface?
The optical reflectance R is the fraction of incident light that is reflected from a
surface. The value of R is dependent on both the frequency of the light and the
angle of incidence

reflected intensity
K = r-¡ : :—•

incident intensity

It is usually measured using normal incidence of light.
The optical constants shown in Table 1.4 are valid at an energy of 1 eV or

equivalently at a wavelength of 1240 x 10~9 m.

Table 1.4 Optical properties of various materials at an energy of I eV
(A= 1240 x I0-9m).

Material n k R

Aluminium
Cobalt
Copper
Gold
Iron
Nickel

1.212
4.46
0.44
0.13
3.43
3.06

1 2.464
5.86
8.48
8.03
4.79
5.74

0.9697
0.722
0.976
0.992
0.678
0.753

The optical reflectances of metals and semiconductors have very characteristic
features. Metals have high reflectance at long wavelengths but at shorter wave-
lengths the reflectance declines. On the other hand semiconductors have low
reflectance at long wavelengths but beyond a threshold wavelength known as the
band edge or absorption edge, the reflectance increases rapidly as the wavelength
decreases. This frequency or energy dependence of optical properties is demon-
strated in Figs. 1.3. and 1.4. The continuum model gives no reasons for this
characteristic behaviour of the materials.
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Figure 1.3 Reflectance spectrum of polycrystalline silver [4].
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Figure 1.4 Optical absorption spectrum a(£) of gallium arsenide [5]. Reproduced with permission
from M. R. Sturge, Phys. Rev. 1962.

1.4.4 The Hagen-Rubens law
Is there a relationship between the electrical and the optical properties of a metal?
The optical reflectivity and the electrical conductivity of metals at 'low' fre-
quencies (v < \ x lO^s"1) or long wavelengths (A > 3 //m) are also related by
an equation of the form,

where CTO is the dc electrical conductivity and R is the reflectance. This is known as
the Hagen-Rubens relation. Therefore the mechanisms underlying conductivity
and reflectivity seem to be related. The prediction of the reflectance on the basis of
the Hagen-Rubens law is shown in Fig. 1.5.
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1.0

0.5

0.1 10 100

Conductivity o(106Q~1m"1)

Figure 1.5 Variation of the optical reflectance with electrical conductivity at a wavelength of 3//m
(i/ = I x 10'V ).

1.5 THERMAL PROPERTIES
How do we quantify the thermal properties of materials?
In the case of thermal properties we are often concerned with the rate of flow of
heat through the material as measured by the thermal conductivity K. This
determines whether the material is a thermal conductor or insulator. Another
quantity of interest is the amount of heat which must be supplied to raise the
temperature of unit mass by one degree, that is the specific heat or heat capacity C.

1.5.1 Thermal conductivity
How is the thermal conductivity defined?
The thermal conductivity K of a material is the rate of transfer of heat per unit
time, per unit cross sectional area, per unit distance, per unit temperature gradient

where A is the cross-sectional area through which the heat passes, Q is the
heat energy transferred in time t between two locations a distance x apart, where
T2 and T! are the temperatures at the two locations. An alternative, but equivalent

13
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CHAPTER 1 PROPERTIES OF A MATERIAL CONTINUUM

definition is that K is the quotient of the thermal flux density JQ with respect to
the temperature gradient dT/dx. This equation only applies under steady-state
conditions.

Table /.5 Thermal conductivities of various materials. Material

Silver
Copper
Gold
Aluminium
Nickel
Tungsten
Zinc
Iron
Silicon
Platinum
Glass

K
(Wm-'K -•)

428
398
315
237
158
182
1 1 5
80
83
73
0.2

1.5.2 The Wiedemann-Franz law
7s there a relationship between the electrical and thermal properties of a metal?
In most cases good electrical conductors are also good thermal conductors.
Quantitative investigation by Wiedemann and Franz revealed that for most metals
the relationship between electrical conductivity and thermal conductivity K
obeyed the following law

This seems to imply that the underlying mechanisms behind electrical and
thermal conductivity are related in some way. The continuum model offers no
explanations.

1.5.3 Specific heat capacity
What determines the increase in temperature of a material when it is heated?
The specific heat Cm of a material is the amount of heat required to raise unit mass
of the substance by one degree of temperature, while the heat capacity C is the
amount of heat required to raise the temperature of an unspecified mass by one
degree of temperature.

Here, M is the mass, dT is the change in temperature, U is the internal energy
and dQ is the heat energy absorbed. The specific heat is itself dependent on

14
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temperature. It is also dependent on whether the measurement is made under
constant-volume or constant-pressure conditions.

The heat capacity of some materials varies in a very characteristic way. For
example, the temperature dependence of the heat capacity of iron which is shown
in Fig. 1.6 has an anomaly at 1040 K. As we shall see later this also corresponds to
a magnetic phase transition.

Temperature (K)

Figure 1.6 Heat capacity of iron showing anomalous behaviour at about 1040 K [6]. Reproduced
fromj. Phys. Chem. Solids, 1, J. A. Hoffmann et ol., p. 52, copyright 1956, with kind
permission from Elsevier Science.

1.5.4 The Dulong-Petit law
Is there a relationship between the heat capacities of various materials?
The heat capacities of many materials are found to be linearly dependent on the
molecular or atomic weight of the substance, at least at higher temperatures. This
can be expressed as the 'molar heat capacity'. This is the heat capacity of a fixed
number (N0 = 6.02 x 1023) of atoms or molecules of a substance. For many
materials this has a value close to 25 J mol"1 K"1, a result discovered by Dulong
and Petit.

Material C
(Jmol-'K

Table 1.6 Heat capacities of various materials.

Aluminium
Iron
Nickel
Copper
Lead
Gold

24.3
25.7
26.8
24.4
26.9
25.5

This seems to imply that the heat capacity is dependent only on the number of
elementary entities, either atoms or molecules depending on the material. How-
ever, even this law only applies at high temperatures, since the heat capacity varies
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CHAPTER 1 PROPERTIES OF A MATERIAL CONTINUUM

with temperature as we shall see in the next chapter. The molar heat capacity
deviates significantly from the value predicted by the Dulong-Petit law at lower
temperatures (e.g. below 100 K in lead, below 400 K in aluminium and copper and
even at higher temperatures in carbon).

1.6 MAGNETIC PROPERTIES
How do we quantify the magnetic behaviour of materials?
When dealing with magnetic properties, we are usually concerned either with the
permeability ¿¿ of the material, which describes its response to an external field, or
its magnetization M which is the magnetic moment per unit volume.

1.6.1 Magnetic moment and magnetization
Which properties determine the response of a material to an applied magnetic field?
The magnetic moment m of a material is the maximum torque rmax experienced
by the material under the action of a magnetic field in free space, divided by the
strength of the magnetic field H:

where ¿¿0 is the permeability of free space which is a universal constant. The
magnetization M of a magnetic material is the magnetic moment per unit volume:

M=^ . (1.20)

This is a function of magnetic field strength H, and so is not a material constant.

1.6.2 Magnetic susceptibility
How does a material respond to an external magnetic field?
The magnetic susceptibility x i§ tne rati° of magnetization M to magnetic field
strength H:

Table 1.7 Magnetic permeabilities and susceptibilities of various materials.

Material

Permalloy
Iron
Samarium-cobalt
Aluminium
Manganese
Copper
Bismuth

Relative permeability
/¿r

~I04

~I02-I03

1.00002
1.00083
0.99999
0.99983

Susceptibility
X

~I04

~IO?-I03

2 x I0~5

8.3 x I0~4

-1 x I0~5

-l.7x IQ-4
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MAGNETIC PROPERTIES

It is not a material constant for strongly magnetic materials such as iron, cobalt
and nickel because in these materials x ls dependent on field strength H. How-
ever, it can be approximately constant for weakly magnetic materials such as
aluminium and sodium. Values of the susceptibility for various materials are
shown in Table 1.7.

1.6.3 Magnetic permeability
How is the magnetic induction in a material related to the magnetic field?
The magnetic permeability of a material is the ratio of magnetic induction B to the
magnetic field strength H:

/* = £, (1.22)

and since B = ^o(H +M)9 there is an exact relationship between permeability and
susceptibility:

\L = /¿0(X + 1) = Mo Mr, (1 -23)

where /¿r is the relative permeability and //0 is the permeability of free space.
This quantity is strongly dependent on magnetic field strength applied to

ferromagnetic materials and so is not a materials constant. In weakly magnetic
materials such as paramagnets or diamagnets it is close to the value /¿o since x is
approximately zero.

1.6.4 The Curie-Weiss law
How does the susceptibility of weakly magnetic materials vary with temperature?
Some magnetic materials undergo a magnetic phase transition at a temperature Tc

from a high temperature state (with low susceptibility \ ~ 10~3) to a low tempera-
ture state (with a significantly higher susceptibility). In many cases the variation of
the susceptibility of these materials with temperature T in the region T> Tc can be
described by an equation known as the Curie-Weiss law:

x(T) = T^fr. (1.24)

In other cases the value of Tc is zero, which means that there is no transition
temperature, and in this case we have the more restricted Curie law:

XCT) = ̂ . (1.25)

In both cases the susceptibility varies inversely with temperature. An example of
the variations of x~l with temperature for some manganese compounds, which
obey the Curie or Curie-Weiss laws, are shown in Fig. 1.7.
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0

Figure 1.7 Magnetic susceptibility of some manganese compounds as a function of temperature
showing agreement with the Curie law and the Curie-Weiss law.

1.6.5 Magnetoresistance
How is the electrical resistance of a material affected by application of a mag-
netic field?
The electrical resistance of some magnetic materials can change quite dramatically
when a magnetic field is applied. Normally this effect is measured in terms of the
fractional change in resistance AR/jR versus magnetic field. In the case of materials
such as permalloy (an alloy of nickel and iron) AR/R can be about 2% at magnetic
saturation. However, the effect can be much larger in other materials, such as
bismuth in which AR/R increases by 150% in a magnetic field of 9.5 x 105Am~1

(1.2 T). More recently, materials in which the resistance is rather more sensitive to
magnetic field have been found such as InSb-NiSb, which exhibits a 300% change
in resistance in a field of 2.3 x 105Am~1. However, in this case the magneto-
resistance of the material is also strongly affected by temperature, which therefore
limits its applications.

Magnetoresistance can be very large in some thin film magnetoresistive mate-
rials. The first layered magnetic material to exhibit this 'giant magnetoresistance'
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^AR/R

1.

(Fe3nm/Cr 1.8 nm)30

(Fe 3 nm / Cr 1.2 nm)35

(Fe 3 nm / Cr 0.9 nm)̂

-3 -2 -1 1 2 3 4
Magnetic field (T)

Figure 1.8 Giant magnetoresistance in Fe/Cr/Fe showing 45% decrease in resistance in a field of
2T(20kG)[7].

was Fe/Cr/Fe [7] and this was soon followed by other materials including Fe/Au/Fe
[8], Co/Au/Co [9] and a range of other layered structures including Co/Cu/Co [10].
The magnitude of the effect depends on the thickness of the layers as shown in
Fig. 1.8. The physical effect that causes this change in resistance with field is
the spin-dependent scattering of electrons. This means that electrons with spins in
one direction are scattered more than electrons with spins in other directions.
In order to explain why this happens it will be necessary to gain an understanding
of the electron band structure of the materials. The phenomenon is exploited in
magnetic recording where the magnetic read heads are made from giant magneto-
resistive materials.

1.7 RELATIONSHIPS BETWEEN VARIOUS BULK PROPERTIES
Are there any relationships between the bulk properties of materials which are not
obvious on the basis of the continuum model?
In addition to the variation of the bulk properties of materials with temperature
and applied fields, empirical relationships have been noticed between various
macroscopic properties. We have considered five well-known empirical laws
determined from macroscopic properties which require an explanation based on a
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better understanding of the structure of materials. We have observed, for example,
that a material with high optical reflectance is usually a good electrical conductor
and is also usually a good thermal conductor. This, and other property relation-
ships, are largely unexplained by the continuum model. These relationships can
not be simply fortuitous. They therefore provide the starting point for the devel-
opment of a theory of the material properties because they challenge us to provide
an explanation.

We need to understand the underlying physical reasons why such relationships
occur. It is common knowledge that good optical reflectors are good electrical
conductors. Despite the everyday familiarity of this relationship, it is at first a
strange result because it is difficult to see why there should be any relation
between these two properties at all. We need to consider the problem at a deeper
level because our continuum models provide no clue to the explanation.

1.8 CONCLUSIONS
Does the continuum model help us to understand what takes place inside materials?
The main objective of this chapter is to indicate the types of macroscopic measure-
ments that are usually made for property determination of materials. These
measurements are almost always macroscopic measurements which do not depend
on any assumptions about the underlying mechanisms, nor do they depend on a
more fundamental interpretation. They are merely defined in terms of an indi-
vidual measurement or sometimes in terms of a combination of measurements. For
example, current density/ and electric field £ are both measurable quantities which
are not material properties, but their ratio a =J/£ is a material property known as
the electrical conductivity. However, the inability to explain the behaviour of these
properties and their interrelationships through the use of the continuum model
forces us to develop more sophisticated descriptions of materials based on an
atomistic approach, and ultimately on an electronic approach.
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EXERCISES
Explain each of the following well-known laws. You should describe the relations
involved and try to explain the underlying reason for each on a classical basis.

Exercise 1.1 The Wiedemann-Franz law

Exercise 1.2 The Hagen-Rubens relation

Exercise 1.3 The Dulong-Petit law

Exercise 1.4 Macroscopic properties
Explain what is meant by

(i) Permeability
(ii) Conductivity
(iii) Elastic modulus
(iv) Extinction coefficient
(v) Heat capacity

What is the physical significance of each of these properties and how are they
measured?

Exercise 1.5 Empirical laws
Certain observed relations, for which there seems to be no obvious reason, were in
the past called 'laws'. There are a number of empirical 'laws' which relate different
properties of materials: the Wiedemann-Franz law, the Hagen-Rubens law, and
the Dulong-Petit law. Other laws describe the behaviour of certain material
properties as a function of external conditions, such as the Curie and Curie-Weiss
laws. Describe each of these laws and try to provide a simple continuum explana-
tion for each.
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Exercise 1.6 Electronic and lattice contributions to properties
Which of the following properties are determined primarily by the electrons and
which by the atomic lattice (or maybe both?) in a material?

(a) Heat capacity
(b) Thermal conductivity
(c) Permeability

How is the elastic modulus of a material related to the strength of the
interaction between the atoms in a material?
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2 PROPERTIES OF ATOMS IN MATERIALS

OBJECTIVE

This chapter provides a background for the rest of the book since clearly the
electrons within materials are contained within a volume defined by the atomic
cores of the material, and it is important to realise that the properties of those
electrons are determined largely by their interactions with these atomic cores.
In fact, we should go even further and state that the electronic properties of
interest in this book are determined exclusively by the energy 'landscape'
provided by the ionic cores. Therefore, before going further we should look at
some of the properties of this ionic background. In the case of crystalline
materials this ionic background forms an ionic 'lattice', but in other materials,
such as amorphous solids, it forms a random aggregate.

2.1 THE ROLE OF ATOMS WITHIN A MATERIAL
What is the next level of sophistication beyond the continuum model?
Moving on from the continuum model our next question must be to ask what lies
beneath the surface of the material. Before proceeding with a discussion of the
electronic properties of materials, we shall pause briefly to consider the arrange-
ment of the atomic cores within a solid. The simplest case occurs when the atoms
are arranged in a regular crystal lattice with a well-defined spatial periodicity or
symmetry.

Many authors like to consider the crystal structure to be the combination of a
crystal lattice plus a 'basis' (which is an identical configuration of atoms attached
to each lattice point) [1, p. 4]. We shall go further and consider our solids to be
composed of a periodic array of atomic cores immersed in a sea of electrons:

solid = ionic lattice + electronic 'sea'.

The lattice here represents the arrangement of atoms in a periodic structure
and the electron sea is a random arrangement of high-energy electrons without
obvious periodicity, although we shall see later that the lattice imposes periodicity
on the electrons. This separation may seem almost trivial at first sight, but it does
have important implications for our subsequent description of materials. Some of
the properties of materials can be attributed principally to the lattice and some
principally to the electrons. It will be our purpose to separate and identify these,
where possible, and of course we will later pay more attention to those properties
which depend on the electrons.

Since all electrons are identical we will eventually see that the differences in
the electronic properties of materials are due more to the ions and their lattice
symmetry than to the electrons themselves, which is an interesting conclusion.
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2.1.1 Types of lattice symmetry
How do the atoms arrange themselves inside a material*
The classification of the various types of lattice is merely a mathematical
abstraction of the forms of symmetry exhibited by materials [2,3]. Figure 2.1
shows the various forms of lattice or crystal structures. These have been verified by
X-ray diffraction results [4],

Simple cubic

¿t
Body-centred cubic Face-centred cubic

Simple tetragonal j Body-centred
tetragonal

Simple (Base-centred i Body-centred Face-centred
orthorhombic orthorhombic orthorhombic orthorhombic

Simple Base-centred
monoclinic monoclinic

Triclinic Trigonal

a
Hexagonal

Figure 2.1 Different forms of lattice symmetry exhibited by crystalline materials.
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The principal classes of lattice, with the number of elements exhibiting each
form of symmetry in the solid state, are as follows: 35 cubic (19 face-centred
cubic, 14 body-centred cubic, 2 simple cubic); 29 hexagonal (mostly hexagonal
close packed); 5 trigonal; 2 tetragonal; 21 orthorhombic, monoclinic or triclinic.

2.1.2 Cohesive energy of the lattice
What forces hold the lattice together?
When considering the structure of a solid two questions arise: (i) what holds the
lattice together? and (ii) what determines the symmetry of the lattice? The cohe-
sive energy of a crystal is the amount of energy which must be supplied in order to
separate it into free neutral atoms. The melting temperatures of crystals are
approximately proportional to the cohesive energy. Typical values of the cohesive
energy of solids are shown in Table 2.1.

Table 2.1 Values of cohesive energies for various materials.

Ruthenium
Silicon
Iron
Germanium
Cadmium
Mercury
Xenon

Cohesive energy
£c(kjmol ')

650
446
413
372
1 1 2
65
16

Tc(K)

2723
1687
181 1
1 2 1 1
594
234
161

Melting point

Tc ( C)

2450
1410
1575
985
321
-39

-112

The cohesive energy of a solid is determined exclusively by electrostatic
interactions between the electrons, which have negative charge, and the ionic
cores, which have positive charge. The ionic cores are located on the lattice sites,
whereas the electrons may be located on the lattice sites or may be free to move
throughout the solid.

The exact form of the electrostatic interactions holding the solid together may
be different in different cases. We can identify three main types: (i) ionic
interactions, for example NaCl; (ii) covalent bonds, for example carbon; and (iii)
Van der Waals interactions in inert crystals, for example xenon. There is also the
question of the interaction in metals in which all ionic cores have a net positive
charge and are immersed in a sea of negatively charged electrons. In these cases
the negatively charged sea of electrons is composed of some of the outer electrons
of the atoms, while the inner electrons remain localized at the ionic sites. The
subject of the cohesive forces in materials has been treated in great detail by Mait-
land et al. [5].

In cases where there is no separation of electrical charges within a material the
electrostatic interactions cannot be very large. In these cases the atoms are held
together by the 'fluctuating dipole' forces also known as Van der Waals forces.
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(a)

(c)

(d)

Figure 2.2 Variation of the interatomic potential £p(x) of the ions with position in a regular crystal
lattice, (a) Linear lattice of ions, (b) potential well of isolated ion, (c) potential wells of
two ions in proximity, (d) periodic potential of a linear array.

These forces are dominant in the inert solids such as Ne, Ar, Kr, Xe, and Rn. They
form the weakest type of bond and only play the most important role if none of
the other cohesive mechanisms occurs.

In these solids, although the time average of the charge distribution is always
zero for a given atom, at any given instant there will be a net electric dipole
moment. The dipole moments on neighbouring lattice sites lead to a weak attrac-
tive interaction between the dipoles. This force then holds the atoms together.
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THE HARMONIC POTENTIAL MODEL

2.2 THE HARMONIC POTENTIAL MODEL
How can the atomic forces be modelled in the simplest way?
We now need to consider the form of bonding between the atoms in order to pro-
vide an adequate model for the behaviour of the lattice. The interactions between
the individual ions can be represented by a single force. Over a large range of
deformations the force between the neighbouring lattice sites is proportional
to their displacement. Ultimately for large deformations this proportionality no
longer holds of course, but we should first explore the consequences of this sim-
plest of models.

-3a/2 -a/2 0 a/2 3a/2

Figure 2.3 Ionic cores in a one-dimensional crystal lattice subject to a harmonic potential.

In this case the harmonic potential leads to an internal restoring force F on each
atom which is proportional to the displacement u of the individual atom from its
unstrained equilibrium position with respect to its two nearest-neighbours,

where k is a force constant, sometimes known as the stiffness coefficient. Since the
force F = —dEp/du where Ep is the potential energy, this means that each lattice
site reaches its equilibrium position at the bottom of a parabolic, or harmonic,
potential of the form

Such a potential can arise also from a mechanical model in which the atomic
cores are connected by linear springs, as shown in Fig. 2.4.
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E = - J (-2ku)du = ku2. (2.2)

F=-2ku, (2.1)

Figure 2.4 Linear lattice of atoms in which the interaction force is represented by the spring model.
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In this case the force on any given atom in the lattice is determined solely by its
displacement u relative to its two nearest-neighbours.

F= -ku + k(-u) =-2ku. (2.3)

Force due Force due
to atom to atom
on left on right

Considering now, for simplicity, a transverse vibration of the linear lattice with
interactions only between nearest-neighbours. For the nth atom in the lattice the
force is,

F = m-^- = kfa-i - 2un + un+i), (2.4)

where un is the displacement of the nth atom and m is its mass. Using a Taylor
series expansion for the displacement,

where a is the lattice spacing. Substituting this back into the force equation gives

which is the equation of a wave with velocity v given by

-&
and a frequency of u; = ^/(2k/m). This gives a direct relationship between the form
of the interatomic potential through the force constant k, the lattice spacing a, the
mass of the atoms and the velocity and frequency of vibrations passing through the
lattice. We will see in the next section that the elastic modulus is also determined
by these quantities.

2.2.1 Elastic modulus
Can a simple expression for the elastic modulus be derived on the basis of the
spring model?
We can use the above simple linear lattice model, in which each atomic core lies
within its harmonic potential, to calculate the elastic modulus EY. Suppose the
lattice is subjected to a constant applied force Fapp along its length. Under
equilibrium conditions the lattice spacing will be equal throughout the chain,
ensuring no net force on each atom, in accordance with the above equations.
Nevertheless, this lattice spacing will be different from the unstrained spacing a.
This equilibrium lattice spacing under the applied force will be a + un — un-\.
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Considering the forces on the last atom in the lattice, since this is the only one
acted upon directly by the applied force, it has only one nearest-neighbour. This
leads to a restoring force of -k(un - un-\) which, under equilibrium conditions,
must balance the externally applied force. Also under equilibrium conditions we
can assume that un - un-\ is the same for all pairs of atoms. Let this be Aw. For the
purposes of this derivation we will assume that the cross-sectional area per linear
lattice chain is a2, which is equivalent to assuming a simple cubic lattice. This gives
a stress of a = F/a2:

„ = *£. (2.8)a2-

Let the macroscopic deformation of the lattice be A£. The strain e is then

_ M _ NAw _ Aw'~~<o~~ito~~v (2-*}

where N is the total number of atoms in the linear lattice and £Q is the undeformed
macroscopic length. The elastic modulus E\ is the ratio of stress to strain, and
therefore

£y=- = -. (2.10)e a

This means that the elastic modulus of the linear chain lattice is defined by the
unstrained interatomic spacing a and the force constant k. The elastic modulus of
the lattice can then be related to the wave velocity in the lattice by the equation,

/Eytf3 /EY ,~ 11Nl / =V^r=V7' (2'n)

where p is the density of the material.
We should note that under large deformations this simple parabolic potential is

not sufficient to correctly describe the elastic behaviour, and in this case higher-
order terms become significant, particularly third-order contributions to the elas-
tic modulus. This leads to anharmonicity of the lattice potential which is essential
in the explanation of such phenomena as thermal expansion. This is described in
Sections 2.2.3 and 2.2.4.

2.2.2 Quantization of lattice vibrations
If the material consists of a discrete lattice are all frequencies of vibration allowed?
We consider again the simplified problem of the linear lattice. The expression for
the force on an individual atom can be transformed into an equation in terms of
the positions of the atoms x instead of their displacements from equilibrium u.

Consider a longitudinal vibration of the lattice. Let xn be the position of the nth
atom. Then the dispacement of the nth atom from unstrained equilibrium can be



CHAPTER 2 PROPERTIES OF ATOMS IN MATERIALS

written un = xn — (xn-\ +a) or alternatively un = xn - (xn+i - a). The force on
the nth atom is then,

Fn = -k(xn - fe_i + a)) + k(-Xn + (*w+i - a)). (2.12)

At any lattice spacing the nth atom will be at equilibrium, according to this
model, provided it is located midway between its nearest-neighbours. Therefore
the net force on the atom is not dependent on the equilibrium spacing a.
Eliminating a leads to,

F = k(xn-i-xn)-k(xn-xn+l). (2.13)

Then the force and acceleration are related by the equation,

F = m-j-f- = k(xn-i -2xn+xn+]). (2.14)

This again leads to the following equation for the velocity of propagation of
vibrations,

'-J2-& ("5)V m y p

For the position of the nth atom in the chain this equation has solutions of
the form

xn = Aexp(i(qna - ujt)). (2.16)

This is a valid solution of the equation of motion for any value of A provided the
following condition is satisfied for the frequency of vibration a;,

2k
u2= — (1-cosqa), (2.17)

and when qa = Tr/2, 3?r/2, 5?r/2 and so on, this will give the 'classical' single atom
vibration frequency u = ^/(2k/m). However, in general, the solution for the
vibration of the discrete lattice is different from that of the single atom.

From eqn (2.17) we may take the positive root

»=^sin(C). (2.18)V m \2J
If we have a total of N atoms in the chain and impose periodic boundary

conditions (the Born-von Karman condition), then there are just N allowed values
of q which independently satisfy all the conditions [6].

The proof of this is fairly simple. If we have a wave passing along the lattice we
must have XN = x\ for periodic boundary conditions. Therefore the allowed
values of the product qNa must be an integral multiple of 2?r in order to satisfy the
periodic boundary condition,

qNa = 27T, 4?r, 6?r,... 2Nyr. (2.19)
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Since a is the interatomic spacing and N is the total number of atoms, then
Na = L the length of the lattice. Therefore,

q = 27T/L, 47T/L,... 2N7T/L. (2.20)

Let us try a larger value of q which can still meet the boundary conditions, for
example q = 2(N + l)?r/L, in order to see what happens when we go outside this
specified range of q:

. f 2 ( N + l ) 7 T 1 „_xn = A e x p i < ——-——na -ut> (2.21)

Í27T 1 .f2N7T 1
= Aexpi< — na - LUÍ > expi< ——na >, (2.22)

and since L/N = a, this gives the following relation for all n,

xn(2(N+ !)TT) = *w(27r)expi{2mr}, (2.23)

which is not an independent solution. Higher values of q will simply lead to wave
motion that is identical to one of the values of q in the range (27T/L, 47T/L, ... 2N/
L). In the linear lattice of N atoms there are consequently only N allowed distinct
vibrational modes [7]. This is demonstrated graphically in Fig. 2.5.

Figure 2.5 Waves in a discrete lattice showing that two different values of wave vector give identical
displacements of the lattice. The longer wavelength vibration is the only meaningful
interpretation of the wave on the basis of the discrete lattice. This demonstrates that
there are only N independent solutions of the wave equation in a lattice with N atoms.

This can easily be extended to three dimensions. Consider an array of N3 atoms
in a cubic lattice: the allowed values of q are

? = < f o + f y + f c , (2.24)

where now the constraint is

qx\ qy\ qz = 27T/L, 47T/L,... 2N7T/L. (2.25)

Again only certain vibrational modes are possible and there are N3 distinct
modes. We have therefore shown by this simple example that the allowed vibra-
tions of a periodic lattice are restricted and discrete, that is they are quantized.
This is an important result in which we can understand the quantization of the
allowed lattice vibrations on the basis of a simple discrete classical model of
the material.
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2.2.3 Anharmonicity
What are the immediate and obvious drawbacks of the simple spring model?
Although the harmonic potential, or spring model, works quite well for small
displacements of the atoms, it is quite easy to demonstrate that it must fail for
large displacements. If we simply consider two atoms, the energy of the system
when the atoms are moved closer together will be larger than the energy of the
system if they are moved apart. Put another way, the atoms cannot be displaced
relative to one another so that they occupy the same location, but they can have
the distance between them doubled.

This argument demonstrates that the lattice potential must ultimately be
anharmonic [8]. It is this anharmonicity which gives rise to thermal expansion and
is also responsible for third-order elastic constants, that is the variation of elastic
moduli with strain. The anharmonic potential can most easily be described as a
perturbation from our simple harmonic potential

EP = ku2

by the addition of third- and fourth-order terms

Ep=ku2-fu3-gu\

(2.26)

(2.27)

where all the coefficients &, f and g are positive.
Alternatively, you will often find the anharmonic potential expressed as a

Lennard-Jones 6-12 potential which has the form shown in Fig. 2.6:

where a is the lattice spacing. However, this is also just a simple method of
obtaining an approximate form of energy as a function of interatomic spacing.

Energy E

Interatomic
spacing a

Figure 2.6 Anharmonic potential as a function of distance between two ionic cores.
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2.3 SPECIFIC HEAT CAPACITY
Can the observed specific heat capacity be interpreted in terms of the lat-
tice properties?
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2.2.4 Gruneisen parameters
How can anharmonicity in the lattice be described?
If the characteristic vibration frequency of the atoms within a crystal lattice
changes with volume due to variation of the stiffness coefficient with atomic
displacement, then the simplest assumption to make is that the fractional change
in frequency is the same for all vibrational modes and that this is proportional to
the fractional changes in volume

Aa; ^v /i ^m— = 7—, (2.29)
(jj V

where the coefficient of proportionality 7 is the so-called Gruneisen parameter.
The fractional change in volume can be directly related to a change in pressure

AP that causes the volume change

AP = K—, (2.30)v
where K is the bulk elastic modulus. Therefore,

— = pAP. (2.31)uj K
Considering that the vibrational frequency is related to the stiffness coefficient

as shown in Section 2.2.2, it becomes possible to relate the Gruneisen parameter
directly to the change in stiffness for a given change in volume:

-(£f
1 /2£V1/2

do; = -L ( — ) d*, (2.33)m \ m )

and, therefore,

^ = JU = 7^. (234)
w 2k v

This equation shows how the vibrational modes of the lattice change with strain
and how this relates to changes in the stiffness of the lattice. It can be shown, for
example, that the Gruneisen parameter 7 and the thermal expansion coefficient a
are related via the specific heat capacity Cv and the bulk elastic modulus K

tt = 7§- (2.35)

(2.32)
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As we consider the physical properties of materials and try to explain their
behaviour we will find that these properties often can be attributed primarily to
either the lattice or the electron sea. The first of these that we will consider is the
heat capacity or the specific heat, which is the heat capacity per unit mass. This is
determined largely by the lattice, although there is a contribution due to the
electrons, which we shall discuss later.

The vibrations of a crystal lattice are related to the heat content of the system
and hence to the thermodynamic temperature. We have already noted the Dulong
and Petit law which simply states that the molar heat capacity is a constant. Let us
see how this can be obtained from a consideration of lattice vibrations.

2.3.1 Classical theory of heat capacity
How can the heat capacity of a material be explained in terms of the vibration of
the atoms?
From classical statistical thermodynamics we expect a thermal energy k^T to be
associated with each mode of vibration at any given temperature T. If there are N
atoms each with three degrees of freedom, then there are 3N modes each with
energy k&T. The internal energy is therefore,

U - 3NfeBT, (2.36)

and since the heat capacity at constant volume is simply Cv = dU/dT, then

CV=3N£B . (2.37)

If we consider a mole of material, for which N = 6.02 x 1023 atoms, and
¿B = 1.38 x 10~23 JK-1 we obtain

Cv = 24.94 J mole'1 K~\ (2.38)

which is the classical value of the molar heat capacity predicted by the Dulong-
Petit law.

Notice, however, from Fig. 2.7 that the heat capacity is not constant as
temperature changes. Therefore, a more sophisticated theory is needed, particu-
larly at lower temperatures.

In the quantum theory of heat, atoms can only take up energy in discrete
amounts (quanta) rather than continuously, as we have assumed so far. At room
temperature the magnitudes of the energy quanta that most atoms can absorb are
small enough that these can be provided by the thermal vibrations of the sur-
roundings. Exchange of heat with the surroundings can occur almost continuously
leading to equipartition of energy and this means that these atoms have the
classically expected heat capacity. Examples of materials that come into this cate-
gory at room temperature are lead, copper, aluminium and the other materials
given in Table 1.6.

However, in the case of materials which have light strongly bound atoms, such
as diamond, the energy quanta that must be absorbed are much larger. This means
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Diamond

0 100 200 300 400 500

Temperature T (K)

Figure 2.7 Variation of specific heat Cv of various materials as a function of temperature.

that exchange of heat with the surroundings is no longer continuous and so
equipartition of energy is not established at room temperature. The heat capacity
is therefore lower than the classically expected value.

For sufficiently low temperatures equipartition of energy breaks down for all
materials. This occurs when the available thermal energy quanta become compar-
able to the lattice vibration quanta. Therefore at sufficiently low temperatures the
heat capacities of lead, copper, aluminium and other metals are reduced as shown
in Fig. 2.7 and they no longer obey the classical Dulong-Petit law. In fact, at low
temperatures the heat capacity obeys a relation of the form,

which is known as Debye's law. In this law, #D is a characteristic temperature
known as the Debye temperature which varies from material to material.

2.3.2 Quantum corrections to the theory of heat capacity
How can we account for the deviations from the Dulong-Petit law at low
temperatures?
We will now consider a correction to the theory of heat capacity which incorpor-
ates quantum effects. This we will term the Einstein-Debye theory in recognition
of the two main contributors. The original ideas of the single-frequency Einstein
theory were extended and generalized by Debye to give an equation which applies
across the entire temperature range.

Einstein showed that the lattice vibrations of crystalline solids should be
quantized and that therefore only certain vibrational modes were allowed. These
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vibrational quanta are called phonons. Raising the temperature increases the
amount of lattice vibrations and increases the number of phonons. If we consider a
single oscillator, that is an atomic core, oscillating at frequency u;, the average
number of phonons N at a given temperature T obeys the following equation [9],

N%xp(wlT)-r <2-40>
where h is Planck's constant divided by 2?r (which has the value 1.054 x 10~34 Js),
hu is the phonon energy, and fcBT is the thermal energy available to each vibra-
tional mode at a temperature T, including both kinetic and potential energy. For a
single frequency of oscillation, therefore, the thermal energy of the material is

U = Nkuj, (2.41)

U = ( * W (2.42)
V exp(hu/kvT) -\)

Considering the thermal energy of a solid, and remembering that a mole of
material contains N0 atoms and hence 3No oscillators, the thermal energy per
mole is

U = 3N%xp(JrBT)-r <2-43>

Consequently, according to the Einstein theory the molar heat capacity should be

r 7\7 /, (fa \2 expi/WfcfiT)
Cv = 3N0£B I T-~ —~2 - (2.44)

\KBJ / (exp(fcu;/¿BT) - l)z

A graph of the prediction of the Einstein theory of heat capacity is given in
Fig. 2.8. Note that for high temperatures we obtain exp(t}u)/k%T) = 1 + (hut/k^T)
giving Cv = 3No^B which is the classical limit expressed by the Dulong-Petit law.

T

*

3,
o'

I

Normalized temperature T/GD

Figure 2.8 Comparison of the prediction of the Einstein model with observed values of heat
capacity. Reproduced with permission from C. Kittel, Introduction to Solid State Physics,
6th edn, published by John Wiley & Sons, 1986.
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The Einstein model of heat capacity works well at high and intermediate
temperatures. It predicts a heat capacity which decreases as the temperature is
reduced, which is in accordance with experimental observation. But the decrease
that is observed in practice is not quite as rapid as the Einstein model suggests. The
theory therefore does not work well at low temperatures and so a further
correction to the theory is needed at these temperatures.

2.3.3 Extended theory of lattice vibrations
Can the single frequency Einstein theory be improved to give better agreement with
observations at low temperature?
In the Einstein model only one frequency of vibration LU was considered. If we
allow interactions between the atoms, many more frequencies can exist which
range from the Einstein frequency down to frequencies in the acoustic range. This
extension to the theory was developed by Debye.

It is then necessary to know the number of atoms vibrating with any given
frequency u. This is the vibrational density of states D(u) and in three dimensions
this is given by, [1, p. 106]

DM = g£, (2.45)

where V is the volume of the specimen and v is the velocity of sound which is
assumed constant. The total energy of vibration of the solid is then simply

u-J^xscMDMdu;, (2.46)

where Uosc(uj) is the energy of one oscillator at frequency u which is given by the
same expression as before

1/oscM = /fc ̂  1 - (2.47)exp(huj/k^T) - \

We now need to integrate this energy over the range of allowed vibrational
modes. Substituting the expressions for l/osc and D(u>) into the above equation for
the total energy of vibration gives

3Vh ri) u;3
U = 2^J0 exp(M*BT)-lda; (2'48)

where UD is the so-called 'Debye frequency' above which the oscillators behave
classically. If we wish, we can define a 'Debye temperature' #D in terms of this
Debye frequency

*n = ̂ . (2.49)
KB

2.3.4 Relationship of Debye temperature to lattice properties
How can we interpret the Debye temperature in terms of the properties of the
lattice and the interactions between the atoms?
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If the potential seen by any individual atom has the form Ep = kn2, then the
equation of motion of the atom is

d2uF = m-rT=-2ku, (2.50)át¿

and by solving this equation the result is simple harmonic motion of frequency o;0
given by

w«=^' (2-51)

and if the phonon energy is equated with the thermal energy at the Debye
temperature #D, then

hujQ = MD (2.52)

=*^/i» <2-53>
and consequently,

>°=rM <"4>
The consequence of this is that stiff materials (high k) with light atoms (small m)

have high Debye temperatures, and vice versa.

2.3.5 Significance of the Debye temperature
Can the Debye temperature be related to macroscopic properties?
The Debye temperature marks the boundary between the high-temperature class-
ical behaviour which approximately follows Maxwell-Boltzmann statistics (and
hence leads to the Dulong-Petit law) and a low-temperature region in which quan-
tum statistics must be used.

Since the Debye temperature marks the boundary between the quantum and class-
ical regimes, its value tells us something about the atomic bonding in the material
we are dealing with. A high value of #D implies a lattice with light atoms and
strong interactions between the atoms. For example, diamond has efo = 2000 K.
On the other hand, lead, which has heavy atoms that are weakly bound together,
has0D^100K.

The Debye temperature is, in many ways, analogous to the Fermi level in the
theory of electron states which we will discuss in Chapter 4. It plays the same role
in the theory of lattice vibrations as the Fermi temperature plays in the theory of
electrons in metals.

2.3.6 Quantum theory of heat capacity
What is the heat capacity expected on the basis of the quantum theory of lattice
vibrations?
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For N atoms or ions the total phonon energy is,

/ T \3 ¡(huto/kiT) / 3 \D-"*Tu)J. (^r (255)

where

* = %r (2-56)

The Debye heat capacity is the derivative of the total energy of vibration U with
respect to the temperature T

Cv=§- (2.57)

The molar heat capacity is then

_ 3V0t)2 r* ^exp(M¿BT)
Lv - 2*V*BTZ Jo [exp(*W*BT)-l]2da;' (2'58)

/ T \3 f#i'/T a-4^C- = 9W(^)1 l^W**' <"9)

where VQ is the molar volume and N0 is the number of atoms or ions in a mole.
A plot of the Debye heat capacity Cv against temperature is given in Fig. 2.9.

£
T—

l<

¿

Ü

|

5"

Normalized temperature T/8D

Figure 2.9 Variation of the heat capacity Cv with temperature according to the Debye theory.
Reproduced with permission from C. Kittel, Introduction to Solid State Physics, 6th edn,
published by John Wiley & Sons, 1986.
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2.3.7 Heat capacity at low temperatures: the Debye law
Can we obtain a simple expression for the heat capacity at low temperatures?
The heat capacity can be found from the above expression by evaluating the
integral on the right-hand side. At low temperatures this results in the following
expression for the heat capacity

CV=!|^NO¿B(^V (2.60)

which gives the experimentally observed dependence of the heat capacity on
T3 at low temperatures known as the Debye T3 law which was mentioned in
Section 2.3.1.

2.3.8 Heat capacity at high temperatures: the classical limit
What is the predicted heat capacity at high temperatures?
At high temperatures the integral has the value Jc3/3 where x = 0v/T. So that

Cv - 3N0fcB, (2.61)

which, of course, is the expected classical Dulong-Petit result.

2.4 CONCLUSIONS
What important results did we find that went beyond the simple continuum
description of materials?
In this chapter we have discussed some of the properties of materials that arise
principally from the behaviour of the atoms. We have also introduced the concept
of quantization of allowed vibrational energies in discrete lattices. This serves as a
precursor to the discussion of quantization of electron energy levels in Chapters 4,
5 and 6. It has given us a relatively simple introduction to the concept of quantized
energy states because it can be quite easily visualized, even from a classical
argument, why the quantization of lattice vibration occurs.

When we come to discussing the quantization of electron energies rather more
abstraction will be required. However, having understood the reasons for quantiza-
tion of lattice vibrations in this chapter, it should be easier to follow the discussion
of quantization of electron energies in which the concept of imposed boundary
conditions again plays a crucial role.
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EXERCISES
Exercise 2.1 Elastic modulus of a linear atomic lattice
The potential energy of a pair of atoms in a crystal is of the form

Ep(r) = a^a~9 -a2a~[,

where a is the interatomic separation. The equilibrium separation is 0.3 nm and
the cohesive energy is 4eV (equivalent to 386 kj mol"1). Find the effective modu-
lus of elasticity for the pair of atoms and determine the force which would be
needed to reduce the spacing by 1%.

Exercise 2.2 Lattice stabilized by electrostatic repulsion
Consider a one-dimensional lattice made up of atoms with a charge of 1.6 x
10~19 C and a mass of 107 x 10~27 kg each. The array is held together by electro-
static forces with neighbouring atoms at a distance of 0.5 nm. Estimate the velocity
of a long wavelength lattice vibration and calculate the elastic Young's modu-
lus. (You may assume the force between the ions is given by Coulomb's law
F = gi42/47r£o*2, where x is the separation between the charges q\ and q2.)

Exercise 2.3 Classical and Debye theories of specific heat
Use the Dulong-Petit relation to calculate the classically expected thermal energy
of 1 g mole of material at 300 K. Aluminium has a Debye temperature of 430 K.
Prove that the Debye theory and the Dulong-Petit law give the same results at high
temperature. Estimate the thermal energy of 1 g mole of aluminium at 300 K by
using Fig. 2.9. Explain why the results are different.

Exercise 2.4 Lattice vibrations
What is the difference between a damped and an undamped vibration? Write the
appropriate equations describing each of these types of vibration in three dimen-
sions and show how these equations can be applied to a discrete lattice.
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What is meant by a boundary condition, and how are the solutions of a wave
equation affected by the boundary conditions?

Exercise 2.5 Interatomic potential
Explain how the elastic modulus of a material is determined by the interatomic
potential, particularly the harmonic force constant (stiffness coefficient) of the
potential. If this interatomic potential is not quite harmonic, what are the conse-
quences of the 'anharmonicity' for the elastic modulus and thermal expansion?
How can we quantify the anharmonicity in terms of measurable quarititites?

Exercise 2.6 Heat capacity
Find the value of the heat capacity Cv at the temperature TD = &J/&B as a fraction
of the classically expected value, 3N£B, according to Einstein's theory of heat
capacity. The value of this temperature TD is given below for some materials. Find
the corresponding values of the frequency uj and explain why high values of this
temperature TD occur in stiffer, lighter materials.

Material TD (K)

Pb 95
Au 170
NaCI 280
Fe 360
Se 650
C (diamond) 1850
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3 CONDUCTION ELECTRONS IN MATERIALS -
CLASSICAL APPROACH

OBJECTIVE
In this chapter we shall approach the description of electrons in solids using
one of the simplest models possible, that of electrons as classical particles
moving almost freely within the material experiencing minimal interactions
with the ionic potential. In fact, the model assumes that the ionic potential is
completely flat, and that the only constraints on electron motion, apart from
electron-electron collisions, are provided by the physical boundary of the
material. At first, such a model seems so far from reality as to be probably of
little use; however, quite surprisingly the model can give some useful insights
and provides an initial description of electrical and thermal conductivity, the
Hall effect and the Wiedemann-Franz law. Nevertheless, this classical model
has no way of distinguishing between conductors and insulators and gives an
incorrect prediction of the heat capacity of the electrons, so that ultimately a
more comprehensive model is needed.

3.1 ELECTRONS AS CLASSICAL PARTICLES IN MATERIALS
What models can be developed for the behaviour of electrons in materials?
So far we have paid no attention to the effects that are due to the electrons in
a solid. However, it was realized many years ago that, for example, the electri-
cal conductivity of a metal was due exclusively to the motion of electrons inside
the material.

The classical free electron model was developed by Drude and Lorentz [1-4], in
which it was assumed that electrons were classical particles with a kinetic energy
\k^T where T is the thermodynamic temperature and &B is Boltzmann's constant.
These free electrons, which comprised only a small fraction of the total number of
electrons in each atom, could account for both the electrical and thermal
conductivity of a metal and also the optical reflectance at low frequencies.

Given the simplicity of this model, its successes are quite impressive. The most
quoted success was the explanation of the Wiedemann-Franz law by the model.
One notable failure, however, was its prediction of the electronic contribution to
the heat capacity. According to this model each electron should contribute |&B to
the total heat capacity. In practice, this is not observed and, in fact, the electronic
heat capacity is smaller by two orders of magnitude than expected on the basis of
this theory.

Before going on to look at the model in detail let us consider how much of the
volume inside a typical material is actually occupied by the atomic cores, and how
much is 'empty space', so to speak. Consider, for example, a material in which the
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lattice spacing is a and the radius of the ionic cores is r and which forms a body-
centred cubic structure. Since there are two atoms or ions per unit cell, the
fraction of space occupied by the atoms or ions is f 7r(£)3. In sodium, for example,
r = 0.98 x 10~10m and a = 4.2 x W~w m. Therefore, the fraction of space
occupied by the atoms or ions is about 11%, meaning that the majority of the
volume of the material is simply empty space for the electrons to move through.

3.1.1 Basis of the classical model
How might electrons behave inside a material*
The Drude model assumes that the metal behaves like an empty box containing a
free electron 'gas'. The free electron gas consists of the outer conduction electrons
of the individual atoms. So a monovalent metal such as sodium contributes one
electron per atom.

Figure 3.1 Classical free electron model of a solid consisting of a box containing a gas of free
particles which obey the kinetic theory.

Therefore, the number of free electrons per unit volume will be

M _N 0 p
WA

where Z is the valence of the atom, p is the density and WA the atomic mass. These
electrons have energies that are due to the thermal energy of the material and
according to the model behave like the atoms of a gas in the kinetic theory of
gases. The number density of conduction electrons in a solid is typically 1028 m~3

(1022 cm~3) which is, of course, about three orders of magnitude greater than for a
typical gas at normal temperatures and pressures.

This should cause us some concern over the viability of the model. Another
concern is, of course, that the material can hardly be considered to be an empty
box since there are ions located on the lattice sites and these are electrically
charged. Despite this, the Drude model rigidly follows the methods of the kinetic
theory of a dilute, neutral gas, using Maxwell-Boltzmann statistics.
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ELECTRICAL PROPERTIES AND THE CLASSICAL FREE ELECTRON MODEL

The assumptions of the model are as follows:

1 Collisions between electrons are instantaneous and lead to scattering.
2 Between these collisions, other interactions of the electrons with each other and

with the ions are neglected in detail (although the interactions with the lattice
are incorporated implicitly through an averaged resistive term in the equation of
motion).

3 The mean free time of the electron between collisions is r, and this time is
independent of the electron's position and velocity.

4 Electrons achieve thermal equilibrium with their surroundings only through
collisions with other electrons.

We will now develop the theory to help explain some of the well-known electrical
and thermal properties of metals. According to the kinetic theory the kinetic
energy of each electron which is due to thermal energy will be 3£BT/2. In the
absence of an applied field the direction of motion is random.

3.2 ELECTRICAL PROPERTIES AND THE CLASSICAL FREE
ELECTRON MODEL

What effect does an applied electric field have on the electrons inside the material?
In the absence of a field, the electrons move randomly in all directions and
consequently the net drift velocity is zero. When an electric field £ is applied the
electrons are accelerated with force F = e£, so that

m^ = ̂ , (3.2)

where m is the mass of the electrons (9.109 x 10~31 kg), e is the charge on the
electrons (-1.602 x 10~19 C), and v is the velocity of the electrons.

There are also interactions of the drifting electrons with some of the lattice ions.
This leads to resistance in the metal and ensures that the electrons are not
accelerated indefinitely when a field is applied. Therefore an additional resistive
term is needed. The equation of motion then becomes

Av
m — = e£>-jv, (3.3)

where 7 is a constant which represents a resistive force which is proportional to
electron velocity, preventing the electrons from being accelerated to infinite
velocity.

The above equation is analogous to that encountered in viscosity, in which the
resistive force is proportional to the velocity v. The electrons therefore reach an
equilibrium velocity under the action of an accelerating field and this equilibrium
velocity is determined by the interactions with the lattice.

3.2.1 Electrical conductivity
Can we obtain a first principles expression for the electrical conductivity from the
motion of the free electrons?
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In the steady state, when the electrons have reached a final velocity V{ the force due
to the electric field is equal to the resistive force, and opposite in direction

dv
m-^ = e£-'yvf = 0, (3.4)

and so the coefficient 7 can be obtained from

7 = ̂ , 0.5)
ff M

where i/f/£ is known as the mobility of the electrons and is usually denoted //.
If this is used in the equation of motion,

dv e£mdï+iv=et> (3-6)

which leads to the solution

" = I*{1-exp(-¿¡')}- (3'7)

Velocity

Figure 3.2 Variation of the velocity of free electrons with time. The electrons reach a terminal
velocity which is dependent on the resistive force caused by interactions with the lattice.

We can define a relaxation time r as

r = ̂  = ™, (3.8)e£ 7

so that

i/ = i/ f{l-exp(^)j. (3.9)

The current density / is the product of the number of charge carriers per unit
volume N, the charge per carrier e and the velocity v,

] = Nev. (3.10)
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Since N should really be the number density of free electrons, rather than the total
number of electrons per unit volume, we will use Nf instead of N, and the final
velocity Vi under steady-state conditions,

/ = Nfi;f*, (3.11)

and remembering that the final drift velocity is Vf = efjlm = e£/j

J~i (3-12)

or, since / = <r£,

N{e2r Nfe¿o = = , (3.13)m 7

therefore we have derived a direct relationship between the electrical conductivity
a and the resistive coefficient 7 from the equation of motion of the electrons.
Typically for a metal r is 1(T14 to 1(T15 s, Nf is 1028 m'3, e is 1.6 x 1(T19 C and
m is 9.1 x 10~31 kg, giving,

cr = 0.28 x 106 to 2.8 x K^iT'm-1. (3.14)

3.2.2 Ohm's law
Can we go even further and derive the well-known expression of Ohm's law from
this free electron model?
If we rearrange the above equations putting the current density/ — HA where / is
the current and A is the cross-sectional area, and the electric field f = V// where V
is the voltage and / the length

L-^v
A~ m /' (3'15)

,-iï£i,
This then is an expression for Ohm's law which gives the relationship between

current in an electrically conducting sample and the voltage across the sample:

/ = £, (3.17)

so that

.R — ——5—T = —T. (3.18)Nfe2rA aA

We can see therefore that the familiar macroscopic relationship known
as Ohm's law can be derived on the basis of the classical free electron model.
This gives some confidence in the model because it enables us to predict a known
law on the basis of the model, and to relate model parameters to measurable
properties.
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3.3 THERMAL PROPERTIES AND THE CLASSICAL FREE
ELECTRON MODEL

How can the thermal properties be explained on the basis of the free electron
model?
We now look at the explanation of thermal conductivity and the Wiedemann-
Franz law provided by the classical free electron theory. In these, the theory gives
a satisfactory description.

3.3.1 Thermal conductivity
Can we obtain an expression for the thermal conductivity from the classical
electron model equations?
The thermal conductivity K is the rate of transfer of thermal energy per unit
thickness per unit area per unit temperature gradient (see Section 1.5.1),

K- l dQck (319)K-~A^df (3'19)

We can define (dQ/dt)/A as the thermal current density, /Q, so that in one
dimension

dT
Jq = -K^. (3.20)

Consider a one-dimensional temperature gradient in a material which contains
free electrons,

COLD HOT

Figure 3.3 Free electrons moving in a material under the action of a one-dimensional temperature
gradient.

Let E(T) be the thermal energy per electron at temperature T, and the
temperature at a point x be T(x). An electron whose last collision was at another
point xf will have an energy E(T(x')) because the electrons can only gain or lose
energy by colliding with other electrons according to the theory. Assuming that
the time between collisions is r, those electrons from the high-temperature end
will have energy,

E = E{T(x-vr)}. (3.21)

Their contribution to the thermal current density will be the product of the
number of electrons moving towards the cold end (<—), let us say Nf/2, their
velocity v and their energy E:

A/5 = (Nfv/2)E{T(x - VT)}, (3.22)
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similarly for electrons moving towards the hot end of the material (—>),

A/Q = (NfV/2)E{T(x + vr)}, (3.23)

the net contribution to the thermal current density is then,

;Q = (Nfv/2)[E{T(x - i/r)} - E{T(x + vr)}}, (3.24)

and if the temperature difference over the range vr is small then

E{T(x - vr)} - E{T(x + vr)} = -2vr(dE/dx), (3.25)

and therefore

*--"•*§(-§)• <3-26>
In fact, to be exact, since we have a distribution of velocities we should use the

mean square value of velocity for the electron gas, so the equation becomes

fc-N-cVaK-S) <"7>
where E is the thermal energy per electron, and Nf(dE/dT) = (NTot/V)(d£/dT) =
Q! is the electronic specific heat

/Q = {i/2)rC^-^^ (3.28)

and by comparison with the above equations, we see that we now have an
expression for the thermal conductivity K

K = <t/2)Tev, (3.29)

or in three dimensions

K = »Q, (3.30)

where (v2) is the mean square electronic velocity.
This shows that the free electron theory is able to account for the thermal

conductivity of a metal. Typical values of (f2), r and the electronic specific heat
GV are

(v1} =5 x 1010m2s-2 (3.31)

r = 2 x l O ~ 1 4 s (3.32)
and using

Nf = 5 x 1028nr3 (3.33)

CJ = 1 x lO^m^K-1, (3.34)

this gives the thermal conductivity as

X-300Js-1m-1K-1, (3.35)
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which compares well with the values of thermal conductivity K for copper, silver
and gold which are 398, 428 and 315 Js"1 m"1 K"1, respectively.

3.3.2 The Wiedemann-Franz law
Can the relationship between electrical and thermal conductivities be explained by
the classical electron model?
We have mentioned the Wiedemann-Franz law in the previous chapter. The law
can be explained on the basis of the classical free electron model. Expressions have
been obtained for both the electrical and thermal conductivities, and therefore the
ratio can be expressed in terms of the electronic properties,

K 1 (QQmr
â~ 3 Nf«2r ' (3J6)

= 1"C^2) (337)
3 Nf«2 ' P '

Using the relation between the heat capacity and the number of free electrons

q=fNf*B , (3.38)

and relating the kinetic energy of the electrons to the thermal energy

im(f2>=l*BT, (3.39)

gives the following ratio between thermal and electrical conductivity,

which is a constant with value 1.11 x 10"8WÍ7K~1 which is in reasonable
agreement with the Wiedemann-Franz law, giving a value about half of that
observed experimentally. The value of \ (k^/e)2 is known as the Lorentz number.

So the theory does not quite predict the correct result. However, it does remark-
ably well for such a simple model, and if this were the only problem it could be
overcome with some corrections. As we shall see there are more serious problems
with the model which ultimately require a new approach to the description of
electrons in metals.

In fact, Drude's original calculation used E = 3k%T as the energy per electron
(assuming all thermal energy was kinetic energy) leading to a much better
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agreement with the Wiedemann-Franz law with a value of K/oT = 2.2 x
10~ 8WÍ2K~ 1 which is exact to within experimental error. It was later shown
by Lorentz that the correct expression is E = \k^T because of the equipartition
between potential and kinetic energy.

3.4 OPTICAL PROPERTIES OF METALS
How can the classical electron model explain the interaction of light with electrons
in materials?
We have already given the equation of motion of free electrons in a solid as

w^ + 7i/ = F, (3.42)

where F is the force on the electrons due to any stimulus. If we consider the
excitation due to an incident light beam, then the electric field £ of the incident
light is

£ = 6>expM), (3.43)

and since the force on a charge e is given by F = e^, the force on the electrons due
to the incident light is

F = e£0expM). (3-44)

It has been shown above that the coefficient 7 is equal to

7 = ̂ , (3-45)
0"o

where Nf is the number of free electrons per unit volume, and where we have
written CTO to distinguish the dc electrical conductivity instead of cr, and e is the
electronic charge. Therefore, the equation of motion of the electrons is

d2x Nte2dx r xm-¿¿2+ —¿~ j7 = *& expM)- (3.46)

We must expect a sinusoidal solution of this equation of motion for the electrons
of the form x = XQ exp(io;i). Inserting this into the differential equation yields the
following expression for the amplitude of oscillation, XQ, of the electrons,

*° = (NfeW<j0)i - (triple) (3*47)

3.4.1 Dielectric polarization and absorption
How does the classical free electron model account for the dielectric constant
of a metal?
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Material

Lithium
Sodium
Potassium
Rubidium
Caesium
Copper
Silver
Gold

Plasma frequency
^. <*-')

1.7 x I015

1.4 x I015

1.0 x I015

0.9 x I015

0.75 x I015

~I015

- I015

- I015

Damping frequency
^2 (S"')

10 x I012

4.8 x I012

3.1 x I012

4.8 x I012

5.15 x I012

4.7 x I012

4.4 x I012

5.9 x I012
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Since the electric polarization P is given by P = eNfXo, and the relative dielectric
constant by er = 1 + (P/£o£) the classical free electron model necessarily leads to
the following equation for the dielectric constant,

£r = 1 + — jr-j—, y , TTT (3.48)€Q (Nfeu;/cro)i - (muj2/e)

= 1 + (£ouY<To)i - (e0mu2/Nfe2) ' (3'49)

If we then substitute for the two characteristic frequency terms,

le2Nt
"i = \/ L = 27Ti/i (3.50)

y m£o
and

u;2 - — = 27TI/2, (3.51)
°ti

this gives

£r = 1 + . CJl
 2 = 1 + . ^ 2 . (3.52)

1CJW2 — ̂  1^^2 ~ ^

i/i is called the 'plasma frequency', and z/2 is called the 'damping frequency'.
If we separate the dielectric constant into real and imaginary components, then on
the basis of the classical free electron model the real component of the relative
dielectric constant, the polarization, is

e 1 = w 2_¿ 2 = 1_^i_ j (3.53)
Z/2 +l/|

and the imaginary component, the absorption, is

ei = 2nk = ̂ (^-I}. (3.54)
V \ I/2 + Z/l /

This shows that the two independent optical constants n and k (or alternatively
e i and £2) can be derived theoretically from the Dru de free electron model.

Table 3. / Plasma and damping frequencies of various materials for the
Drude free electron model.
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The variations of the polarization £} and the absorption e2 with frequency
according to the classical Drude free electron model are shown in the following
figures.

Figure 3.4 Polarization e\ as a function of frequency according to the classical free electron theory
of metals.

Figure 3.5 Absorption e2 as a function of frequency on the basis of the classical free electron theory
of metals.

The term e\ is known as the 'polarization', the real component of the dielectric
constant, and e2 is the 'absorption', the imaginary component of the dielectric con-
stant. The 'plasma frequency' v\ marks the boundary between the low frequency
reflecting regime and the high frequency transparent regime.

3.4.2 Optical reflectance
Can the classical free electron model explain the dependence of optical reflectance
on wavelength of light in metals?
The variation of reflectance on the basis of the free electron model can now be
derived. The reflectance at normal incidence is related to the two optical constants
by the relation
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and consequently,

R = H + ej)1/2 + l-{2[(g? + ̂ )1/2 + ¿i]}1/2 „ .._
(£2 + ,2)1/2 + ! + {2[(£2 + £y,2 + £i]}1/2 ' <"*>

when the above values of e\ and e2 can be substituted into the equation. The actual
expression remains cumbersome; however, the limits as v —> 0 and v —» oo can be
found relatively easily, see Example 3.2. The variation of reflectance with fre-
quency of incident light is shown in Fig. 3.6.

se.
I
I
S
I

0.5

1014 1015

Frequency v(s"1)

1016

Figure 3.6 Variation of reflectance with frequency of incident light according to the Drude free
electron model.

3.4.3 The Hagen-Rubens law
How can the well-known relationship between electrical conductivity and optical
reflectance be explained?
From Maxwell's electromagnetic equations a relationship can be derived between
the optical constants n and k, the dielectric coefficients e\ and £2> and the electrical
conductivity a. The relative dielectric constant £r is related to n and k by the
equation,

er = £i + 1£2 = n2 -k2 + \2nk (3.57)

and the expression for e2 in terms of conductivity and frequency is, in SI units,
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where v is the frequency of the electric field vector in the incident electromagnetic
wave and uj is the angular frequency, u = ITTV.

In a metal the absorption e2 is much higher than the polarization £ l5 so that

Er^ie2, (3.59)

and the refractive index is related to the dielectric constants by

7-2 i C2

¿,t-l + í^ ,3.60)

_2+j/5±£Eu. o,,>
Since <j2l(jjlsl » ÊJ , this gives

«2^T^-. (3.62)
2UJ8()

Furthermore, since ¿TI — 2w& — vlueo it is clear that we must also have

kI*-?- = n1 (3.63)
2uJ£()

At longer wavelengths, and hence lower frequencies, //, the high conductivity a
leads to values of both k and n which are much greater than unity, and are
typically of the order of 104.

Now, considering the expression for the reflectance

R = ("-l)l+kl (3.64)
(« + l)2 + 62

= 1 —, , (3.65)(n + l)2+k2 '

and since n « k > 1 this leads to

R « l - - (3.66)

£^1 - ZV^TT^AT, (3.67)

= l-2v/2Üe¡Aj (3.68)

which is the Hagen-Rubens relation [5], showing that high-conductivity materials
have high reflectance at long wavelengths. This provides the physical justification
for our observation at the outset in Chapter 1 that good electrical conductors are
also good optical reflectors.
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3.4.4 Extensions of classical electron theory to optical properties at
high frequencies

How can the higher-frequency absorption bands be explained by the model?
At higher frequencies it is known from experimental observation that the reflec-
tance does not necessarily remain low, but can show some localized peaks. These
can be explained by an extension of the classical free electron theory due to Lorentz,
in which some electrons behave as classical bound oscillators. These electrons are
more tightly bound to the atoms and can therefore only respond to higher-energy
excitations. This leads to the following equation of motion for the electrons,

d2* d*
md^ + 7 d í + í o exp(iu;í)> (3 '69)

where now the additional term kx represents a binding force between electrons
and ionic sites. This equation describes the motion of these bound oscillators and
gives absorption at higher frequencies in the form of bound oscillator resonances.

classical IR absorption

Frequency v(Hz)

red viótot
visible spectrum

Figure 3.7 Optical reflectance of metals beyond the infrared range, in which 'resonances' at higher
energies are observed. These can be attributed to bound oscillators rather than free
electrons. Reproduced with permission from R. E. Hummel, Electronic Properties
Materials, 2nd edn, published by Springer Verlag, 1993.

3.4.5 The photoelectric effect
What happens to the conduction electrons when high-energy light impinges on
certain metals?
It was shown by Hertz that a metallic surface emits electrons when illuminated by
light of a very short wavelength. The emission of electrons from the surface is
dependent on the wavelength of the light and not on the total energy incident on
the surface.

The emission of electrons does not occur when the surface is irradiated with
longer wavelength light over a longer time period, if the wavelength is below a
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certain critical value. In other words, if the frequency of the incident light is below
a certain threshold value, exposure for longer periods will not lead to the emission
of electrons, even though the total energy absorbed by the surface can be increased
indefinitely in this way.

Frequency of incident light

Figure 3.8 Kinetic energy of emitted electrons in the photoelectric effect as a function of frequency
of incident light.

Furthermore, the kinetic energy £K of the emitted electrons is dependent on the
frequency of the light, but not on the intensity of the light:

EK = constant(z/ - z/o), (3.70)

where v is the frequency of incident light and i/o is the threshold frequency which
just enables electrons to escape from the material.

Table 3.2 Values of the work function and threshold frequencies for the
photoelectric effect in various materials.

Material

Caesium
Rubidium
Potassium
Lithium
Sodium
Zinc
Copper
Tungsten
Silver
Platinum

Threshold energy or
work function
d>(eV)

1.91
2.17
2.24
2.28
2.46
3.57
4.16
4.54
4.74
6.30

Threshold frequency

4.62
5.25
5.42
5.51
5.95
8.63

10.06
10.98
1 1.46
15.23
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An explanation of these observations was given by Einstein [6]. If u; is the
angular frequency of the incident radiation and t) is Planck's constant the energy of
an incident light photon is

EM = 60;. (3.71)

Now, considering the electrons as classical particles trapped in a finite square-
well potential of height 0, and assuming one light quantum interacts with one
electron, the energy imparted contributes to the energy needed to overcome the
binding energy EB of the electron to the solid 0 and to the final kinetic energy of
the electron,

»O; = E K + E B (3.72)

= ±mv2 + (f) (3.73)

= ±mv2 + huo, (3.74)

where 0 is the symbol used for the work function of the metal. This is identical
to the threshold energy needed to liberate the electrons. Rearranging the equa-
tion gives,

EK=hv = hvo9 (3.75)

which agrees with experimental observations. This model of the photoelectric
effect we may call semiclassical. It relies on the quantum nature of the incident
light, but still treats the electrons as classical particles in a finite potential well. The
work function is the energy needed to extract one electron from the box, or
alternatively is the depth of the potential well.

3.5 CONCLUSIONS
In the final analysis, what are the advantages and disadvantages of the free
electron model?
The classical free electron theory provides a simple model of the behaviour of
electrons within a solid which seems to work reasonably well in certain cases for
metals, for example the alkali metals, but not for insulators. The model takes no
account of the properties of the lattice and conceptually this is a shortcoming.
Nevertheless, there are a number of physical properties of solids that are domi-
nated by the electrons rather than the lattice, such as electrical and thermal
conductivities.

The greatest success of the model was its ability to predict the relation between
electrical and thermal conductivity known as the Wiedemann-Franz law. It also
allows for a phenomenological explanation for electrical resistance and Ohm's law
can be derived on this basis. Even the Hall effect can be described in the alkali and
noble metals using this model. When combined with the quantum theory of light it
gives an explanation of the photoelectric effect. The Drude model is also able to
account for the optical properties of metals in the infrared range and when
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combined with the Lorentz theory of bound oscillators it can account for the
optical properties at higher frequencies.

However, despite all these successes the simple Drude model has several
shortcomings. The greatest of these arises in the calculation of the electronic
specific heat capacity, and also its prediction of the optical properties of metals in
the visible and ultraviolet ranges of the spectrum. It is unable to account for the
temperature dependence of the dc conductivity (aside from the use of an ad hoc
dependence of r on temperature). Also, it has not accounted for the temperature
and field dependence of the Hall coefficient.

Consequently, an improved theory of the electronic structure of materials is
needed. This should show first of all that the heat capacity of the electrons is 100
times smaller than is predicted by the classical electron theory. In order to address
this problem it is quite clear that a simple modification of the classical particle
model, such as replacing the 'empty box' of the solid by a periodic lattice with
Coulomb-type interactions, will not be sufficient. Even though such an approach
would, by its very nature, bring the model closer to reality, it would be unable to
resolve the critical problem of the electronic heat capacity. Therefore a more
radical approach is needed. This can be achieved by the inclusion of a quantum-
mechanical description of the free electrons.
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EXERCISES
Exercise 3.1 Drude free electron theory of metals
Outline the basic assumptions of the classical (Drude) free electron theory of
metals. Describe the extension by Lorentz of the original theory to include the
effects of bound electrons and describe how these were represented in the model.
Calculate the expected instantaneous velocity of electrons at 300K.

59



CHAPTER 3 CONDUCTION ELECTRONS IN MATERIALS - CLASSICAL APPROACH

Exercise 3.2 Reflectivity based on Drude theory
State the relationship between the dielectric constants of a material and the Drude
parameters v\ and z/2 from the classical free electron model. Using the relationship
between the reflectance R and e\ and £2 show the limiting values of R as v —» 0 and
v —> oo. Under what frequency conditions does the Drude prediction of R work
and under what conditions is it inadequate?

Exercise 3.3 Electrical and optical properties of a classical free electron metal
Write a short discussion of the principal successes and failures of the classical
free electron theory. The mobility of electrons is defined as the ratio of electric
field to velocity (n = z//£). In a piece of copper the mobility was found to be
3.5 x 10~9 m2 V"1 s"1. Assuming that the classical free electron model can be used
calculate the resistive coefficient 7, the electrical conductivity a and the mean free
time between collisions. (Copper has a density of 8940 kg m~3, an atomic weight
of 63 and each atom donates one conduction electron).

Exercise 3.4 Classical free electron description of resistivity
The density of copper is 8.95 x 103 kg m~3. Calculate the number of free electrons
per cubic metre and hence their drift velocity when a current is flowing in the
metal with density lOkAm"2. When 1 atomic per cent of a monovalent impurity
is added to copper, the mean free time between collisions of electrons with the
impurities is 5 x 10~14 s. Calculate the resistivity of the impure metal.

Exercise 3.5 Mobility of classical free electrons
From the data given below calculate the mobility of an electron in each metal at
room temperature.

Element

Copper
Silver
Gold
Cadmium
Zinc
Aluminium

Atomic wt.

63
108
197
112
65
27

Resistivity
(Qm)

i .8x icr8

l .6x I(T8

2.4 x I(T8

7.5 x I0~8

6.0 x IO-8

2.7 x I0~8

Valence electrons
(per atom)

1
1
1
2
2
3

Density at 20°C
(kgm-3)

8950
10490
19302
8650
7130
2700

Describe the changes in a metal that result from plastic deformation and suggest
what changes you would expect in the electric properties of copper as a result of
cold working. How could you restore the electrical properties of the metal to their
original value after cold working?

Exercise 3.6 Absorption of light by a metal
Calculate the attenuation coefficient, alpha, in reciprocal metres of (a) a metal foil
50-nm thick which reflects 40% and transmits 20% of the light incident upon it,
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and (b) a glass which absorbs 90% of the incident light in a thickness of 0.2 m.
If the energy of the incident light is 1.5 eV calculate the extinction coefficient k.

Explain how the real and imaginary components of the dielectric coefficient,
known as the polarization and absorption, respectively, are related to the
refractive index and extinction coefficient via the free electron model. Calculate
the absorption and polarization for the metal if the refractive index is n = 0.5.
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4 CONDUCTION ELECTRONS IN
MATERIALS - QUANTUM CORRECTIONS

OBJECTIVE
In this chapter we look at another 'free' electron model in which the electrons
are described by wavefunctions contained within a material boundary. Once
again the model assumes that the potential inside the material is completely
flat, which amounts to ignoring the presence of the lattice. The electrons are
therefore only constrained by the limits of the material. The main difference
between this and the classical free particle model is that only certain energy
levels are allowed. This means that with constraints on the numbers of
electrons that can occupy these energy levels, only those electrons with energies
close to the top of the electron 'sea* can contribute to the heat capacity. This
results in a reduction by two orders of magnitude of the expected electronic
contribution to the heat capacity, bringing it into agreement with measured
values. However, ultimately the model is insufficient because of its failure to
take the lattice potential into account.

4.1 ELECTRONIC CONTRIBUTION TO SPECIFIC HEAT
How can the free electron model be developed further to allow prediction of a
wider range of properties?
In view of the apparent failures of the classical free electron model of metals, we
must look at the next level of sophistication to see whether an improved theory can
be derived. The next procedure is to try a quantum-mechanical approach to the free
electron model. The most critical problem in the Drude theory was the contribu-
tion to the heat capacity from the electrons. The theory predicted a contribution
of |¿B per electron, whereas in practice this contribution was known to be much
smaller. The classically expected electronic contribution to the specific heat is

C^=fNo*B. (4.1)

With NO = 6.02 x 1026 atoms per kg mole, and assuming one conduction electron
per atom,

qr = 12.5 J mol'1 K-1. (4.2)

The observed value is typically,

C^ = 0.2Jmol"1K-1. (4.3)

The discrepancy arises from the treatment of the conduction electrons as a
classical free gas. The fact that Nf = 1028 m~3, which is 1000 times greater than
for a classical free electron gas, and also the fact that the particles are not
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electrically neutral (and therefore interact through Coulomb repulsion) should
immediately have caused suspicion about the adoption of the classical kinetic
theory for the model. It was found that the whole concept of classical statistical
thermodynamics was inapplicable to this situation and that a new form of statistics
was needed to describe electrons in solids.

4.2 WAVE EQUATION FOR FREE ELECTRONS
What is the equation of motion of the electrons in this case?
If quantum-mechanical principles are used to describe the electrons the general
expression for the time-independent Schrôdinger equation [1] is,

- 1- V2VX*) + V(xMx) = Ei/>(x)9 (4.4)2m
where, in our case, m is the mass of an electron, h is Planck's constant divided by
2?r and V(x) is the potential energy at the point in space defined by the vector x. E
is the energy of the electron, which we may consider as a wave or particle. Note
that the Schrôdinger equation here is simply an expression of the conservation of
energy. The sum of kinetic energy and potential energy on the left-hand side
equals the total energy on the right-hand side.

We can find solutions of the wave equation in particular cases. Generally, the
solution has the form

^(x) — A\ cos kx + A2 sin fcc, (4.5)

in one dimension, where x is the spatial dimension, and k is the wave vector which
may be real or imaginary. The probability of finding the electron at any given
point x in space is

P(x) = V;*(*M*) = |VX*)|2, (4.6)
where V;* is the complex conjugate of the wavefunction ip.

The intention in this book is to solve the Schrôdinger equation in one dimension
only. This gives the greatest clarity of explanation by presenting the essential con-
cepts behind the quantum-mechanical free electron model. Nothing new is learned
by generalizing to three dimensions at this stage, other than additional detail.

4.2.1 Consequences of the quantum theory of free electrons
How does the energy of a free electron depend on its wave vector?
It is found, by substituting the solution of the wavefunction into the Schrôdinger
equation, that when the electrons are completely free, that is providing that V(x) is
everywhere zero, the energy E and the wave vector k are related by
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Energy E

Wave vector k

Figure 4. / Free electron parabola showing the dependence of energy £ on wave vector k in which
all energies are possible.

The relationship between energy E and wave vector k is depicted by the free
electron parabola shown in Fig. 4.1. This applies only to completely free electrons.

The important point here is that since the electrons are completely free they can
be considered to be in the presence of a completely flat potential, V = 0 over all
space. Therefore, the electron wavefunction -0 can extend to infinity and there are
no boundary conditions to be applied to the wavefunction.

With no further constraints to be applied, we see that all values of k are allowed
solutions of the Schrôdinger wave equation, and therefore all energies are
allowed for free electrons. Stated in alternative words, the allowed energy values
E form a continuum for free electrons.

If we extend the above one-dimensional model to three dimensions the
components of the wave vector along the #, y, and z directions are &x, &y, and kz.
Consequently the energy of a free electron, with wave vector components in three
dimensions of &x, & , and fez, is

This means that if the electrons are completely free all electron states with the
same energy form a sphere in ¿-space. Therefore, if we have free electrons
occupying all energy levels up to a maximum energy EF> the electrons are all
contained in a sphere in fe-space. We shall return to this idea later in discussing the
Fermi surface for free electrons.

4.3 BOUNDARY CONDITIONS: THE SOMMERFELD MODEL
How can a quantum-mechanical description of the electrons be used while
maintaining most of the classical description from the previous model*
The first application of quantum mechanics to the problem of the electronic
properties of metals was made by Sommerfeld [2,3]. The initial motivation was to
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resolve some of the discrepancies between the classical Drude free electron model
and experimental observation, in particular those problems which arose over the
electronic contribution to the specific heat.

The Sommerfeld model is still very much a free electron model. It assumes that
the conduction electrons reside within a potential which is everywhere constant
inside the metal. This of course is only an approximation, but it is a useful first
step because it leads to a relatively simple formulation of the problem.

Sommerfeld applied the Pauli exclusion principle [4] (see Section 4.4.1) to the
free electron model of metals. This resulted in the resolution of the most serious
anomalies in the classical electron theory of metals. In particular, the difficulty
over the electronic contribution to the specific heat capacity was explained.

In its simplest form, the Sommerfeld model involves only this single modi-
fication to Drude theory. Later we shall look at further modifications such as the
solution of the Schrôdinger equation with more realistic assumptions such as
periodic potentials. For the time being, however, we will just look at the solid as a
simple, flat-bottomed potential box containing electrons. In this the solid is repre-
sented as a square-well potential. In the most elementary calculation an infinite
square well is assumed, but a finite square-well potential also gives relatively
simple solutions.

We will find that there are only certain allowed or accessible energy states for
the electrons under these conditions. Note here that it is the boundary conditions
that are crucial in determining the allowed energy states, not just the wave
equation itself.

4.3.1 Wave equation for bound electrons in an infinite
square-well potential

What happens to the allowed electronic states, that is to say solutions of the wave
equation, if boundary conditions are imposed?
Let us now go to the other extreme and consider bound electrons. This would
seem to be a quite reasonable approach to the problem of electrons in a solid since
mostly the electrons are constrained to remain within the solid. The simplest
possible model then is to suppose that the electrons move freely within the
confines of the volume of the solid, but encounter an infinite potential at the
boundary of the solid which prevents them from leaving the solid. We may
represent this under the simplest conditions in one dimension as an infinite square-
well potential.

The flat potential inside, which is everywhere constant, may seem like a gross
approximation to a solid, but remember that most of the solid is 'empty space'
anyway and the outer electrons are screened from the ionic cores by the localized
electrons. If we allow the potential outside the range — a < x < a to go to infinity,
then the probability of the electron appearing in the ranges x < -a or x > a is
zero. This means that outside the solid

tl>*(x)tf>(x) = 0. (4.10)

65



CHAPTER 4 CONDUCTION ELECTRONS IN MATERIALS - QUANTUM CORRECTIONS

+a Position x

15 -

1 0 - -

5 —

n = 4

n = 2

x = 0 x = a x = 0 x = a

Figure 4.2 Infinite square-well potential which will be used to represent a material in which
electrons are constrained only by the physical limits of the material.

Our boundary conditions therefore must be

t/>(x = -a) = 0.

(4.11)

(4.12)
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If we then solve the one-dimensional wave equation in the time-independent
case,

The difference from the previous example of the completely free electron is that
now we need to apply the known boundary conditions. It is these boundary
conditions which determine the allowed solutions.

At x = a, i¡)(a) = 0, and so

^(a) = AI cos ka + AI sin ka = 0.

At x = —a, ^(—a) = O and so

i¡}(-a) = A\ eos (—ka) + A2 sin(-ka) = O,

which leads to the solution, A\ = 0 and

(4.15)

(4.16)

(4.17)

Energy in units of *V
2ma2

15--

10--

5 - -

Free
particle

a a a a a a a a

WaveWector k

Figure 4.3 The dependence of energy on wave vector for electrons confined in an infinite square-
well potential. The parabolic relation still holds, but only certain discrete energy levels
are allowed.
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we again obtain the solutions

if}(x) =A\ coskx + A2 sinkx. (4.14)

ka = WTT,
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so that

il>n(x)=A2sm(™x\ (4.18)

This is the solution of the wave equation under the given boundary conditions.
Note that only integer values of n satisfy the boundary conditions and so the
allowed energy levels shown in Fig. 4.3 are now discrete:

fc2 ? _2
En=- 5- « = 0,1,2,3... . (4.19)

Zm a^

This means that only wavefunctions with certain isolated energies can fit into
the solid and still meet the boundary conditions. The extension of this model
to three dimensions is simple and introduces no new concepts.

4.3.2 Wave equation for electrons in a finite potential well
What are the allowed electronic states, i.e. solutions of the wave equation, when the
potential box is finite?
The next level of complexity, which brings us closer to reality, is to consider the
possible electron states in the presence of a finite potential well. Clearly in a real
material the potential barriers marking the end of the solid will be finite. This now
brings us close to the idea of the original Drude free electron model which was a
box, consisting of a finite potential barrier represented by the boundary of the
solid, containing classical particles which we called electrons. Now we will use
the same idealized box to represent the solid boundary but instead fill it with
wave-like representations of electrons instead of classical particles. The depth of
the potential well must, of course, be finite because of the evidence supplied by the
photoelectric effect and thermionic emission. In fact these two phenomena can
be used to determine the depth VQ of the potential well, or more correctly the
depth of the most energetic electrons below the top of the potential well.

V = 0

x=-a x = + a
Figure 4.4 Finite square-well potential representation of the energy potential experienced by an

electron in a solid.
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Again we solve the Schrôdinger equation. Inside the solid we assign for simplicity
V = 0. The wave equation is then

where E is the energy of the electron.
Solutions of the wave equation for positions inside the box, that is for \x\ < a,

give the following wavefunction

i/j = Ai cosJbc+Azsinfcc, (4.21)

where * = (2mE)l/2/h = 2*1 X.
For lower energies (E < VQ) A is the wavelength of the standing waves

represented by the wavefunction inside the potential box. Note that larger
energies correspond to shorter wavelengths and vice versa. For higher energies
(E > VQ) the wavefunction will extend well beyond the boundaries of the box and
therefore does not correspond to a standing wave even in the region of the
potential box.

Outside the material, that is for \x\ > a, we now have a finite potential V = VQ,
so in this region the wave equation is,

^4 + ̂ (E-W = 0. (4.22)
dx2 pj

The solutions of the wave equation in this region depend on the energy E.
If E < VQ then the second term on the left-hand side of the equation becomes
negative and solutions for \x\ > a have the form,

^(*)=Bie* lX + B2e-*", (4.23)

where k] = -2m(E - V0)//7
2.

These solutions for E < VQ in the region outside the box are not periodic. They
represent an exponentially decaying waveform which means that for E < VQ the
wavefunction decays with distance beyond the limits of the material.

It is easy to see that since the wavefunction cannot diverge outside the potential
well, we must have B\ = 0 for x > a and 82 = 0 for x < -a so we are left with

•0(*) = B2e~klX forx>a and E < VQ (4.24)

\¡>(x) = B\e~klX for x < -a and E < VQ. (4.25)

In order to find the coefficients in those cases with E < VQ we must again use the
boundary conditions at x — — a and x = a. Since we already have the form of
solution above for both inside and outside the box, we merely need to ensure that
these match at the boundaries of the box.

We will now proceed using only the antisymmetric component of the wave-
function, sin kx. A similar argument can be applied to the symmetric wavefunction,
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cos kx. The amplitude of ̂  must be continuous across the boundary, so that, for the
odd parity (sine) solutions

at x = a,

A2smka=B2e-k*a, (4.26)

at x = -a,

A2sm(-ka)=B}e-kia, (4.27)

and the derivative di/j/dx must also be continuous across the boundary

atx = a,

A2k cos ha = -M2e-*'*, (4.28)

at x = -a,

-A2k cos (-ha) = Míe'*1". (4.29)

We therefore simply equate the solutions both inside and outside the box at the
boundaries and these lead to the condition,

kcot(ka) = -ki. (4.30)

Similarly, for the even parity (symmetric or cosine) solutions it can be shown by
the above argument that,

¿tan(fai) = *i. (4.31)

These last two equations may be solved graphically or numerically for the
allowed energies £„, remembering that E = h2k2/2m.

The important result here is that for energies E < VQ, which represent electrons
'contained' within the potential well, the allowed energies lead to a discrete set
of energy levels. We say 'contained' because it is also clear from the wavefunc-
tion that the electron has a finite probability of being just outside the potential
well, that is i¡>(x) ^ 0 for \x\ > a (or more precisely |t/>(:c)|2 ^ 0 in this range, since
the probability function is dependent on \ip\2 rather than ?/>)•

This is a new result emerging from the quantum-mechanical treatment of
the problem, that does not arise in the classical description of the electrons in
materials.

For energies E > VQ the electron wavefunctions extend outside the limits of the
potential well:

^)=Biefcl*+B2e~*1*, (4.32)

where k2 — —2m(E — Vo)/k , which gives an imaginary value of &i, and hence the
solutions are periodic for E > VQ.

The electrons with energies greater than VQ, the depth of the potential, are not
constrained by the presence of the potential and can therefore have a continuous
spectrum of energies and extend spatially beyond the box. We should note,
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however, that the wavefunctions of these higher-energy electrons in the locations
\x\ < a are perturbed by the presence of the potential well.

4.3.3 The harmonic oscillator
Are there other examples where there is a particularly simple relationship between
energy and frequency of an electron?
The available energy states of a particle such as an electron or atom in a harmonic
(i.e. parabolic) potential can also be determined in a similar way. We have already
seen that to a first approximation atoms in a lattice experience a potential of the
form Ep = ku2, and have an oscillation frequency given by UQ = \/2k/m as shown
in Section 2.2. Using the quantum-mechanical description, the allowable energy
states of a particle in a parabolic potential are found to be simple multiples of the
ground state [5],

En = (n + \)h(jjQ. (4.33)

Therefore, a discrete lattice of particles interacting via a harmonic potential
can be considered as a collection of oscillators, each able to absorb or emit energy
at frequencies that are linear multiples of hujQ, and similarly an electron in a para-
bolic potential will have allowed energy states that are linear multiples of the
ground frequency. Compare this result with eqn (4.19).

4.4 DISTRIBUTION OF ELECTRONS AMONG ALLOWED ENERGY LEVELS
How does quantum mechanics affect the distribution of electron energies?
Unlike classical statistical mechanics, which allows any energy state to be occupied
by any number of electrons, quantum mechanics imposes restrictions on the
number of electrons which can occupy a given energy level.

Energy

V = 0

+a
Figure 4.5 Allowed energy states in a finite square-well potential obtained by solution of the

Schrodinger equation.
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4.4.1 The Pauli exclusion principle
How many electrons can we fit into a given energy state?
The Pauli principle states that no two electrons can have the same set of quantum
numbers, and therefore cannot occupy identically the same energy level in our
solid. We are ignoring electron spin for the moment. This leads to a radical change
in our understanding of the ground energy state of a solid containing a number of
electrons, since no longer can all of the electrons reach the nominal lowest energy
level that they would be allowed to occupy in classical particle physics.

If we have a certain number N electrons in the solid, then we must begin filling
the lowest energy level with an electron. When this is filled we move up to the
next energy level and so on. We do this until each electron has been assigned to
the lowest remaining energy state available. This then is the ground state of our
solid and corresponds to the electronic occupancy at absolute zero temperature.

If we proceed in this way until all electrons have been assigned to an available
energy state, there will exist a highest occupied energy level. This is known as the
Fermi level. It separates the occupied from the unoccupied states only at OK
(i.e. in the ground state of the solid). When we consider electrons occupying avail-
able energy states, we can define a function f(E) which describes the probability
that a given energy state is occupied.

Clearly because of the constraints of a limited discrete set of allowed energies,
and the limitation of one electron per energy state (assuming we treat the spin-up
and spin-down as distinct states), the probability of the lowest-energy states being
occupied is 1 and providing we have enough electrons available, then, at least in
the ground state 0 K, the probability of any state being occupied remains 1 until
we literally run out of electrons to occupy the allowed states. The probability of
occupancy f(E) at 0 K therefore must have the form, shown in Fig. 4.6, where £F is
the highest occupied level, which is called the Fermi level.

Figure 4.6 Probability of occupancy of energy states in the ground (T = 0 K) state. All levels up to £F
are occupied; above that the energy levels are unoccupied.

4.4.2 The failure of classical Maxwell-Boltzmann statistics
Can Maxwell-Boltzmann statistics apply once we have restricted the number of
allowed states for an electron to occupy?
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In classical statistical mechanics, all energies are available and any number of
particles can have an identical energy E, or equivalently have the same state. Under
these conditions, the probability of a particle having an energy E at tempera-
ture T is,

P(E) = P0exp(-^\ (4.34)

The normalization constant PQ is found simply from the condition that the
integral of the probabilities over all possible states must be unity:

[ P(E)d£ = l. (4.35)
Jail E

The Maxwell-Boltzmann distribution function has the following form, illus-
trated in Fig. 4.7.

Probability P(E)

1.0

2.5 eV
Energy E

Figure 4.7 The Maxwell-Boltzmann distribution function which represents the probability of a
classical particle being found with energy £.

Once we have accepted the idea of a finite number of discrete energy levels and
applied the Pauli exclusion principle which limits occupancy of these available
states, it is immediately apparent that classical Maxwell-Boltzmann statistics can
no longer apply, since classical statistics is based on the concept that any energy
can be taken by any number of particles.

4.4.3 Probability of occupancy
With a finite number of allowed electron states in a material, how do the electrons
arrange themselves?
Since the electrons can no longer follow classical continuum statistics a new
description of the energy spectrum of electrons is needed. The Fermi function f(E)
which describes the probability of occupancy of electrons as a function of energy E
[6,7] has the form
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When E = E? it can easily be seen that f(E) = 0.5, and this corresponds to the
Fermi energy, the highest occupied energy level when the electron configuration is
in its ground state.

At temperatures above 0 K the step function form of this probability distribu-
tion becomes distorted with a range of intermediate energies close to Ep for which
f(E) is neither 1 or 0. The reason for this is that the thermal energy can excite
electrons from some lower-energy states to higher-energy states. Therefore, some
lower-energy states which were occupied at 0 K are now unoccupied and some
higher-energy states that were unoccupied at 0 K are now occupied.

1.0

0.5

T = OK
600 K

,6000K

EF = 2.5eV
Energy E

Figure 4.8 The Fermi-Dirac function f (E), which gives the probability of occupancy, varies with
temperature. At absolute zero temperature only the lowest energy states up to the
Fermi level are occupied. At higher temperatures energy states above the Fermi level
can be occupied.

4.4.4 Fermi-Dirac statistics
What statistics do the electrons obey?
When Drude was developing the classical free electron model of a metal, it was
natural to assume that the electron energy distribution was like that of a classical
gas and obeyed Maxwell-Boltzmann statistics because no other statistics for
describing assemblies of particles was available at the time. This gives the number
of electrons per unit volume with velocities in the range v ± dv as

<*»-»(issf7'»(-Ef)-
However, since electrons need to obey the Pauli exclusion principle the

distribution of electrons with velocities in the range of v ± dv must be described by
Fermi-Dirac rather than Maxwell-Boltzmann statistics. In this case the expression
according to Fermi-Dirac statistics becomes,

f(v) = 4 P" exp((mVi/2-kET0)/kKT) + l ' (438)

4.4.5 Electron energy distributions
What other information is needed to describe the electron distribution?
We can describe the number of available electron states as a function of energy E
by the density of available states D(E). This density of states is independent of
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the available electrons to fill the states; it is simply an expression of what energy
values are allowed.

The occupational density of states N(E) describes the number of electron states
per unit energy interval as a function of energy. This is related to the density of
available states D(E) through the probability of occupancy f(E) by the equation

N(E) = 2f(E)D(E), (4.39)

where the factor 2 arises because electrons can have spin-up and spin-down [8,9],
and therefore each available energy state can be occupied by two electrons, one
with spin-up the other with spin-down. This simple expression allows the electron
distribution to be described in terms of the available levels D(E) as determined by
the ionic potential, and the distribution of electrons among these levels f(E) as
determined by temperature, for example.

4.4.6 Density of states
How does the number of allowed energy states vary with energy level?
We have talked at length about the allowed energy levels, how they are discrete
states at low levels near to the atomic cores, and how they form almost continuous
bands of allowed energies at higher levels. We have also shown that the electrons
occupy these states beginning at the lowest energy level and working upwards to
the Fermi level. In doing so they obey the Pauli exclusion principle. So far,
however, we have made no mention of exactly how many allowed levels D(E)
there are for electrons at any given energy level or how this can be determined.
We must, therefore, address this question of an equation for the density of states,
at least in some simplified cases.

4.4.7 Model density of states in square-well potential
How does the density of states vary with energy in the simplest case of a three-
dimensional square-well potential?
Returning to our familiar model, the square-well potential, we can investigate
mathematically the density of available states. If we generalize the earlier result for
the infinite square-well potential (Section 4.3.1) to three dimensions, the energy of
a given state is

E = t)2k2/2m (4.40)

fe27T2

En = 2^2 ("* + ny + n^ (4-41)

where nx, «y, nz are quantum numbers representing allowed solutions of the wave
equation, such that

n2 = n* + n$ + n*. (4.42)

A given energy state, which represents a particular combination of nxj ny, nz, can
be represented as a point in quantum number space. All states with equal energy
will lie on the surface of a sphere. Since only positive value of nx, ny and nz are
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allowed, the available states are restricted to | of the volume of a sphere in
quantum number space.

The number of distinct allowed states No(En) with energies equal to or less than
an energy En is

A
No(Ew) - D(£)d£. (4.43)

Jo
This is equal to the total volume of quantum number space divided by the

volume occupied by one quantum state. Since each quantum state occupies unit
volume in quantum number space this gives,

NQ(En)=l^7m3. (4.44)
o ó

Using the free electron approximation, and remembering that there can be two
electrons per energy state,

2No(En) = f(^YV. (4.45)
5 \ irn )

We will use the N0(E) notation to remind us that it represents the number of states
from E = 0 to E = E. If we differentiate this expression, we obtain the number of
energy states between E and E + d£, which we will denote D(E)

«E> = >.(E), = ï(^)3V, ,4.4«

and putting V = a3, the volume of a cube of material of side a, gives the density
of states

w-^&T*"-*"
and since we can have two electrons per energy state, one with spin-up and the
other with spin-down, the actual number density of electron states is twice D(E).

Remember, this is an approximate expression, which is only valid for free
electrons. In a real material the dependence of the density of states on the energy is
modified and therefore not truly parabolic.

In order to adequately describe the allowed electron states in a solid we not only
need the available energies as determined by the boundary conditions imposed by
the lattice but also the density of states at each of the allowed energies. Generally,
the number of distinct available states D(E) increases with energy £.

4.5 MATERIALS PROPERTIES PREDICTED BY THE QUANTUM
FREE ELECTRON MODEL

Do the predictions of the quantum free electron model correlate with observations?
In this section we look at how the quantum free electron model overcomes some
of the failures of the classical free electron model. In particular, how it explains
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the low electronic contribution to the heat capacity, the temperature-independent
paramagnetic susceptibility in metals, and thermionic emission.

4.5.1 Heat capacity
How does the electron heat capacity predicted by the quantum free electron model
vary from that predicted by the classical free electron model?
We now address directly the main question which proved the downfall of classical
Drude theory - the discrepancy between the observed electronic heat capacity and
the predicted value based on classical theory. The application of the Pauli
principle and quantum mechanics to the problem of electrons in a solid leads to a
new distribution of energy states given by Fermi-Dirac statistics.

When a solid is heated from absolute zero temperature not every electron is able
to gain an energy k^T because the energy state which it would need to occupy
in order to absorb the energy is either already occupied by another electron, or in
some cases does not exist. Only those electrons in energy levels within k%T of the
Fermi level can be thermally excited to higher available energy levels. This leads to
a change in the density of occupied states as shown in Fig. 4.9. The result is a
blurring of the distinction between occupied and unoccupied states, which at 0 K
was a very sharp distinction.

Density of
occupancy

N(E)
= 2f(E)D(E)

Energy E

Figure 4.9 Density of states D(E) as a function of energy £ from quantum free electron theory. Only
those electrons within /cBT of the top of the distribution can absorb thermal energy. This
reduces the expected electronic heat capacity compared with classical theory.

The kinetic energy dEi< of the electrons above the Fermi level due to thermal
energy is,

d£k =f£BTdN, (4.48)

where dN is simply the number of electrons above the Fermi level. This depends
on the density of states at the Fermi level and the thermal energy. Assuming that
the density of states close to the Fermi level does not change drastically as a
function of energy E we can write,

dN - N(EF)ABT, (4.49)
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because as shown in Fig. 4.9 only those electrons within &BTof the Fermi level can
absorb thermal energy and contribute to the specific heat:

d£k = f ¿|T2N(EF). (4.50)

We now immediately have a qualitative solution to the problem of the small
electronic contribution to the heat capacity. If the total number of electrons is N
then only a fraction of these can be thermally excited at a temperature T. This
fraction is typically T/TF where TF is the temperature corresponding to the Fermi
energy k^T? = E?. The electronic heat capacity is then

C5=§ (4.51)

= 3k2
RTN(Ef). (4.52)

For free electrons, the density of states at the Fermi level is given by

N(EF) = !(£), (4-53)

so that

C5=^N*B^r. (4.54)2 /F

If we take quantum mechanics fully into account then the equation for the heat
capacity is slightly modified to

Q.^f.^íai, (4.55)
2 TF 2 EF

where N is the total number of conduction electrons per unit volume. At room
temperature this value of Q is about 1% of the classically expected electronic heat
capacity of (f )N0¿B, because typically TF = 30000K, and hence T/TF = 0.01.

4.5.2 Pauli spin paramagnetism
What predictions does the model make about other bulk properties, such as
magnetic susceptibility?
Electrons have a magnetic moment associated with both their spin and orbital
angular momentum. All metals exhibit a weak paramagnetism which is inde-
pendent of temperature and this may be explained with the free electron model of
metals developed in this chapter [10]. When an external magnetic field is applied
to a material the orientations of the magnetic moments of the electrons are
constrained to lie either parallel or antiparallel to the field. This leads to a splitting
of the energy of the parallel and antiparallel states.

Those electrons with magnetic moments m parallel to the field direction have
energies reduced by AE = -/¿o#*H, while those with magnetic moments anti-
parallel to the field have energies increased by AE = n^rnH. Some of these
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Spin moment
parallel to H

Spin moment
antiparallel to H

H = 0

Spin moment
parallel to H

Spin moment
antiparallel to H

H>0

Figure 4.10 Separation of spin-up and spin-down energy states in Pauli paramagnetism.

antiparallel electrons can reduce the energy of the system by occupying parallel
states of lower energy.

The number of electrons which can change orientation and still reduce the total
energy are those which were within ^mH of the Fermi level in the absence of
the field. If N(E) is the occupancy density of states, then as we have shown in
Section 4.4.5,

N(E) = 2D(E)f(E), (4.56)

where f(E) is the probability of a given state of energy E being occupied, and D(E)
is the density of the states (i.e. number of states with the same energy £). Clearly
0 < f(E) < I where f is the Fermi function.

The Pauli paramagnetic susceptibility xp = M/H is therefore given by

where D(Ef) is the density of states at the Fermi level and m is the magnetic
moment of an electron.

It is clear that the Pauli paramagnetic susceptibility is dependent entirely on the
small fraction of electrons which reside close to the Fermi level. Typically it is
found that Xp ~ 10~10 (dimensionless).

4.5.3 Thermionic emission
What happens when a metal is heated to very high temperatures?
Finally, we will mention in passing the phenomenon of thermionic emission,
which again confirms our basic understanding of electrons in metals. Electrons do
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not escape from a metal very easily. So their energies outside the metal must be
considerably higher than their energies inside. We can represent the metal as a
finite potential well for the electrons as described above.

We define the work function </> as the minimum extra energy, measured
above the Fermi level Ep, which an electron must obtain in order for it to escape
from the solid:

(4.59)

fico

Metal Surface Vacuum

Figure 4.1 1 Square-well potential model of a metal. The work function </> is equal to the difference
in energy between the Fermi level and the energy of an electron outside the material.

Once the temperature of the metal is raised above absolute zero the sharp
distinction between occupied and unoccupied states at the Fermi level becomes
blurred as more electrons are thermally excited to higher-energy states. For most
metals a typical value of the work function is </> = 4 eV, as shown in Table 3.2. but
for some oxide-coated filaments it is as low as 2 eV. It is clear that we must have
kftT > 0 = EO - £F to observe thermionic emission.

4.6 CONCLUSIONS
In what ways does the model succeed or fail to give good predictions of the
properties of materials?
The Sommerfeld quantum-mechanical model had some notable successes, par-
ticularly the explanation of the electronic contribution to the heat capacity, but
also ultimately it had some failures. The model failed to explain the distinction
between metals and insulators or semiconductors. It also failed to explain the
number of conduction electrons by making no distinction between the bound and
free electrons in the solid.

In addition, it did not adequately explain the following:

• The value of the Hall coefficient
• The Wiedemann-Franz law at intermediate temperatures
• The temperature dependence of dc conductivity
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• The anisotropy of de conductivity
• The number of conduction electrons

In order to resolve some of these difficulties it is necessary to consider the
electrons in the presence of a periodic potential instead of a flat square-well
potential. Certain electrons are then trapped within the periodic potential wells
around the ionic cores while other higher-energy electrons ride above the local
potential wells and are constrained only by the boundaries of the material.

The periodic potential within the material is much more realistic, of course,
because the electrostatic interaction between the atomic cores at the lattice sites
and the electrons, which the model neglects, will lead to periodic spatial fluctua-
tions in the potential that are not allowed for in the flat internal potential of the
Sommerfeld model. These have been already described classically in Chapter 2.

Metals are those materials in which there are a number of high-energy electrons
riding above the periodic potential in quasi-free states. Insulators are materials in
which the highest-energy states are constrained within the localized ionic poten-
tials. This means that the insulators do not have 'free' electrons inside the material
and therefore the highest-energy electrons in insulators can not contribute to the
conductivity in their ground state.
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EXERCISES
Exercise 4.1 Fermi energy for a free electron metal
Discuss the principal differences between the classical free electron model and the
quantum free electron model. If the electrons described by the wave equation are
completely free, determine the number density of electron states per unit volume
with wave vector between k and k + d&, assuming that there are states per unit
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volume of ¿-space. From this expression determine the number of states per
unit volume of material with energy between E and E + d£ and calculate the
Fermi energy for a free electron distribution with n electrons per unit volume.

Exercise 4.2 Solution of wave equation in a finite square well
Derive the solution for the wave equation in a one-dimensional finite square-well
potential of height V. What happens to the solutions if the electrons encounter a
periodic potential within the square well? Describe the different types of energy
states permissible under these conditions. Why are only certain energy levels
allowed for 'quasi-free' electrons in the Sommerfeld model?

Exercise 4.3 Electronic specific heat of copper at 300 K
Using the quantum free electron model calculate the electronic specific heat of
copper at 300 K. At what temperatures are the electronic and lattice specific heats
of copper equal to one another (assume #D = 348 K)?

Exercise 4.4 Fermi energy of electrons
Calculate the root mean square velocity of electrons at the Fermi surfaces of
aluminium, copper, and gold if their Fermi energies are respectively 11.7eV,
7.0 eV, 5.5 eV.

Using the resistivities and densities given in Exercise 3.2 on p. 58, determine the
mean free time between collisions of these electrons and find the electron mean
free path length in all three metals. The electron rest mass is 9.1 x 10~31 kg.

Exercise 4.5 Diffraction of electrons at the Fermi energy by the crystal lattice
The Fermi energies and interatomic spacings of sodium, copper and silver are
given in the following table.

Calculate the wavelength of the electrons at the Fermi energy and determine
whether these electrons are diffracted by the lattice.

Na
Cu
Ag

Fermi energy
(eV)

3.12
7.04
5.51

Lattice spacing
(nm)

0.30
0.21
0.24

Exercise 4.6 Diffraction of electrons and validity of the quantum free electron
model
Calculate the energy and velocity of an electron which has a wavelength just short
enough to be diffracted by the lattice of each of the materials given in the previous
example. From this result what do you deduce about the validity of the quantum
free electron model, which assumes no scattering of electrons by the lattice?
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POTENTIAL

OBJECTIVE

We now look at the situation in which the wave equation is solved in the
presence of a periodic potential. The result is a qualitative change in the form
of solutions. In this chapter we focus exclusively on the electron properties as
defined by the allowable solutions of the wave equation under these conditions.
The lattice is present only to the extent that it provides a background for
finding the allowed energy levels for the electrons. An important development
of the model that arises as a result of the periodic potential is that the electrons
inside the material are separated into two types: low energy 'bound' electrons
which are spatially constrained to occupy the localized energy wells, and 'free'
electrons which have higher energy and can migrate throughout the material.
The result is allowed energy 'bands' separated by unallowed energy 'gaps'. The
higher energy 'free' electrons are, in general terms, the same as the electrons
described in the Sommerfeld model. The 'bound' electrons here represent a new
addition to the quantum-mechanical description of the electrons in the material.

5.1 MODELS FOR DESCRIBING ELECTRONS IN MATERIALS
What conceptual models do we have for describing the behaviour of electrons
in materials?
So far we have dealt with the description of the electrons in solids in extremely
simple terms. We have looked at

(i) Classical particles in a box.
(ii) Waves in free space,
(iii) Waves in an infinite potential,
(iv) Waves in a finite potential.

Although each of these models is useful in as much as it gives us a general
understanding of the possible behaviour of electrons in a solid, it must be admitted
that all of the above are approximations that are likely to be far removed from the
situation inside a real material. A real electron in a real solid will see the periodic
potential formed by the atoms on the lattice sites. Ultimately this can hardly be
described by the flat potential within the solid which is used in the square-well
potential calculations.

5.1.1 Electrons in a periodic potential
What is the next extension of the model to bring it closer to the description of a real
material?
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The next level of complexity, which brings us surprisingly close to the real
conditions in a solid, is to invoke a periodic potential within the solid. This was
first attempted by Bethe [1] and Brillouin [2] who expanded the wavefunctions for
an electron in terms of a series of plane waves subjected to the periodic potential.
For calculation purposes, these can be square wells as shown, although in practice
they will be more like parabolic potentials. A useful observation is that the
solutions of the wave equation under these conditions are the Fourier transform of
the periodic potential.

We have already established the methods for finding the allowed wavefunctions
in this situation:

(i) identify the boundary conditions
(remember that both i¡) and difr/dx must be continuous across the boundaries)

(ii) solve the wave equation
(in accordance with the boundary conditions).

In one dimension the simplest representation of a periodic potential has a
square potential well as shown in Fig. 5.1. In this case there are three different
energy ranges of interest

(i) E<V!
(ii) Vi < E < V2
(in) E > V2.

• Boundaries of material

Localized ionic potential wells
V"V

• v-v.

v = o

Figure 5.1 One-dimensional representation of a periodic potential using simplified square wells.

The result of subjecting the electrons to a periodic potential is that the energy
levels become separated into allowed energy bands, where electron states exist,
and forbidden band gaps where no electron states exist.

5.1.2 High energy, free electrons
What are the solutions of the equation of state for very high-energy electrons in the
volume occupied by the material?
Clearly for £ > Vi we have the case of free electrons so that the wave equation can
be solved without the electrons being constrained within the potential well. This
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means that all values of k are allowed and the energy spectrum is continuous. This
is similar to the solution for the finite square-well potential in Section 4.3.2 when
E > VQ. In this case the electrons have escaped from the material.

5.1.3 Low energy, bound electrons
What form do the solutions of the equation of state take for low energy electrons?
For £ < V] we have a number of finite square-well potentials of width a. Electrons
with these energies occupy bound states within these local periodic potentials.
This is similar to the situation described above for the single finite square
well potential with E < Vo. The electron states in this case correspond to those
of electrons localized at the ionic cores on the lattice sites in a solid and con-
sequently these electrons can not take part in conduction. These are discrete
energy levels.

5.1.4 Intermediate energy, conduction electrons
What form do the solutions of the equation of state take for electrons of
intermediate energy?
For Vi < £ < V2 we have a different situation. Here the boundary conditions are
provided by x — ±b. Since b is much larger than a this ensures that once the
energy is above Vi the difference in energy between successively higher allowed
energy states is less than for the energy levels below Vi. The solutions here are
similar to those of a finite square-well potential of depth V2 - Vi and for electrons
with energy E > V]. These are the conduction electrons. However, the periodic
potential does perturb the solution of the equations even at these higher energies.
The degree of perturbation depends on the depth, width, and number of periodic
potentials within the box.

The electrons in this energy range we should correctly call 'quasi-free'. That is,
they are constrained only by the physical limitations of the material. They are
equivalent to the electrons described by the Sommerfeld model.

Free electrons E > V2

Quasifree electrons
V1<E<V2

Bound electrons
with discrete energies
E<V!

F/gure 5.2 Allowed electron energy levels in a one-dimensional 'square-well' lattice obtained by
solving the Schrodinger equation.
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5.1.5 Comparison with Sommerfeld free electron model
How do the solutions differ from the Sommerfeld model predictions?
This means that there are now three groups of electron states with qualitatively
different properties. The totally free electrons are those whose energies are large
enough for them to have completely escaped from the metal. These will be of little
intrinsic interest, however. Next, the quasi-free conduction electrons, which are
constrained only by the boundaries of the solid and form an almost continuous
spectrum of k values or allowed energy states. Finally, there are the bound
electrons whose energies are low enough for them to be trapped in the potential
wells close to the atomic cores on the lattice sites. For these electrons the allowed
energy levels are more widely separated.

It is the second group, the quasi-free electrons, which contribute to the electrical
and thermal conductivity of metals. These electrons can move throughout the
entire solid. We can see now from this model why a free electron theory such as
the Sommerfeld model seems to account so well for the bulk electrical and ther-
mal properties of a metal. It is because the solutions of the wavefunction in the
Sommerfeld model are quite close to the wavefunctions of the higher-energy
electrons in a metal, which are the main contributors to the electrical and thermal
properties of metals. We shall find that the difference between a metal and an
insulator is that the metal has some of these quasifree electrons whereas the insu-
lator does not.

5.2 SOLUTION OF THE WAVE EQUATION IN A ONE-DIMENSIONAL
PERIODIC SQUARE-WELL POTENTIAL

What changes occur in the solution of the wave equation in the presence of a
periodic square-well potential?
We now introduce the periodicity of the crystal lattice in one dimension and solve
the wave equation under these conditions, as in the paper by Kramers [3].
Consider square-well potentials of height VQ, width c, periodicity a and distance
between wells b. Then b = a - c and the potential has the form

•— c-

0 -b 0 a-b a

Figure 5.3 A simplified square-well potential representation of a one-dimensional lattice.
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SOLUTION OF THE WAVE EQUATION

As we have shown before, the allowed energies can be found by solving the
Schrôdinger equation for the regions where V = 0 and V = VQ separately. Spatially
we separate the regions V = VQ for —b < x < 0, and V = 0 for 0 < x < a - b, and
furthermore, V(x + a) — V(x). The Schrôdinger equation for the one-dimensional,
time-independent case is,

~ ib s? v'w+V(*mx)=EV)W' • (5-1}

which we now solve in the two regions of interest.

(i) Where V - 0,

MX) = A exp(i/to) + B exp(-i/&), (5.2)

and since V = 0, then the wave vector ft is given by

t-e*^. <5.3)
(ii) Where V = V0

il>v(x) = C exp(ax) + D exp(-ax), (5.4)

and since V = Vo, and assuming that E < Vo we obtain the relation

So, if E > Vo this leads to oscillatory (wave-like) solutions, but if E < V0 the
solutions are simply decaying exponentials.

Applying boundary conditions, it must be remembered that two continuity
conditions must be satisfied:

(i) i/>(x) must be continuous,
dib(x)(ii) j ; must be continuous.v ' ox

So, for example, at x = 0 at the boundary of one potential well, our boundary
conditions require that the wavefunction V;o in the V — 0 region matches the
wavefunction i/v in the V + VQ region,

V'o(O) - <MO), (5.6)

and also the derivatives must match at the boundary,

¿V>o(0) = ^<MO). (5.7)

There is also a periodicity condition on the wavefunction. In order that the
wavefunction should have the same periodicity as the lattice we also require that
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CHAPTER 5 BOUND ELECTRONS AND THE PERIODIC POTENTIAL

the wavefunction at x + a is the same as at x. This periodicity condition can be
expressed in terms of a wavefunction with vector fc, as was shown by Bloch [4]:

MX + a) = V>(*) exp(ifej). (5.8)

Therefore, at the boundaries x = — b and x = a - b we have

Vv(-fr) = expHMV'ofc - b) (5.9)

^ = expHMd^-&). (5.10)

The above four conditions lead to four simultaneous equations in the unknowns A,
B, C and D:

V>(0): A + B-C + D (5.11)

^-: i/3(A-B) = a(C-D) (5.12)

,, l v Cexp(-a¿?) , ., F Aexp(i/?(tf-fe)) 1 /f ^^
*(-b)'- Dexp(^) =eXp(-'^[+Bexp(-k-¿))J (5'13)

<¥(-fc) «Cexp(-aè) [ Aexp(i^-6)) 1
1̂ : -aDexp(afc) = eXp(-lMl/3[-Bexp(-i/í(a-¿))J- (5'M)

These four simultaneous equations can be solved if we require the determinant
of the coefficients A, B, C, D to vanish. In that case the following energy restriction
is obtained

cos(ka) = f Q ~f ) sinh(ae) sm(P(a - b)) + cosh(afc) cos(/?(0 - b)). (5.15)
V 2a£ /

The limitation imposed by this condition is that the expression on the right-hand
side of the equation must lie between ±1 for allowed solutions. Mathematically it is
possible for the expression on the right-hand side to lie outside the range 1, but
then this does not correspond to a physically allowed solution.

5.2.1 Kronig-Penney approximation
What simple approximations can be made to the periodic potential in order to
demonstrate the form of the solutions?
A simplification of the above constraint can be obtained by a mathematical model
known as the Kronig-Penney approximation [5]. In this the width of the potential
barriers, fe, is allowed to decrease to zero, while the height VQ of the barriers is
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allowed to increase to infinity under the condition that the product abVo remains
constant. In this case then we have the following limits:

lim s'm/3(a - b) = sin (3a (5.16)
b^O

lim cos 0(a - b) = cos fia (5.17)
b-^O

lim sinh ab = ab (5.18)
&->o
lim coshab = 1. (5.19)
¿>-o

The following relations for the wave vectors still hold,

„ (2m£)1/2

0 = —fr—> (5.20)

(Im^p-E))1/2

a = ^ , (5.21)

and again for electrons in the regions with potential V = V0 and with energies
greater than Vb solutions are wave-like, while for those in the same regions with
energies less than VQ, a is real and the solutions are exponentials.

+2 i-
Allowed energy ranges are shaded

-2 L

Fig. 5.4 Allowed energy levels of electrons according to the Kronig-Penney model. Reproduced
with permission of R. H. Bube, Electronics in Solids: An Introductory Survey, published by
Academic Press, 1971.

89

¿

+

cû-| (Q
£00.

û.



As (3a increases, for example with the lattice parameter <z, the allowed energy
bands become wider because the solutions become more like those of free elec-
trons. However, as the potential VQ increases, so P(=abmVo/h2) increases, the
electrons become less free and the allowed energy bands become narrower. As VQ
increases further the solutions ultimately will resemble those of an electron trapped
in an infinite square-well potential.

5.2.2 The nearly free approximation
What values of energy are allowed for a wave in a one-dimensional discrete periodic
lattice?
Another way of looking at the behaviour of electrons in a periodic potential is to
consider the allowed solutions of the wave equation in a periodic potential as a
perturbation from free electron behaviour. Using a one-dimensional lattice of
length L and with n atoms it can be shown that the allowed values of k are
governed by

kl=^- (5.25)

and since for free electrons E = h ¿2/2ra, it is immediately apparent that only
certain restricted values of energy are allowed by the lattice: those corresponding
to integer values of n:

_ t>2 «V n2h2 ...
£«=2^-í7-=8^- (5'26)

Extending this to three dimensions gives

k2 = k2 + k2 + k2 (5.27)

= ̂ (nl+n2
y+nl), (5.28)

and

En=^(k2 + k2 + k2). (5.29)
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Now the previous constraint becomes,
p

cos(ka) = — sin(/3a) + cos(/fo), (5.22)ba
where,

P = ̂ . (5.23)

Allowed energy bands according to this model are shown in Fig. 5.4.
The only energies allowed are those for which

P
-j— sin(fa) + cos((3a) < 1. (5.24)ba
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The idea of solving the wave equation in an 'empty lattice' has been discussed by
Shockley [6] and provides a limiting case for very weak potentials.

5.2.3 Density of states
How does the number of available energy states for electrons vary with energy of
the electrons in the free electron approximation?
The number of different k states that is possible up to a given value kn can be
calculated easily in the free electron limit by noting that the values nx, ny and nz
must all be positive. Therefore the number of available states is simply the number
of unit cubes in the positive quadrant of w-space of radius n. In other words it is
one eighth of the volume of a sphere in «-space:

N0(£,,) = ̂  ™\ (5.30)
o 3

A ' Lk»and since n = ,
7T

N0(£,,)=^IL
3^. (5.31)

Here we must remember that the electrons have spin, and therefore each energy
level can be occupied by two electrons. Therefore the number of electrons from
k = 0 to k = kn will be twice N0(£,7)

2N0(En)=^L*kl (5.32)

If we wish to express this number of electron states in terms of energy En instead
of km we need to know the relationship between En and kn. In general, this is not
known, but if we make the free electron approximation, E(k) = h2k2/2m, then the
number of available states between E — 0 and E = En is

"*«.>-¿ ̂ r
This function can then be differentiated with respect to E to obtain the density of
states per unit energy interval

D(E)=-^N0(E) (5.34)

-£&T«"

-£$T«a'
where V is the volume of the material. This is the same result that was obtained in
Section 4.4.7 beginning with a different condition, the square-well potential.
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5.3 THE ORIGIN OF ENERGY BANDS IN SOLIDS:
THE TIGHT-BINDING APPROXIMATION

How can we view the electron energy levels in a material as if they had evolved
from the energy levels in single atoms?
We have already seen in the previous discussion that there is a qualitative differ-
ence in the properties of the high-energy, quasi-free electrons which are responsible
for electrical and thermal conduction; and the low-energy bound electrons which
are trapped in the atomic potential wells located on the lattice sites.

Now we shall take another approach originated by Bloch [7] which also contri-
butes to our understanding of the properties of electrons in solids. It is well known
that the energy levels of electrons within a single isolated atom are highly discrete.
This was shown, for example, in the Bohr model of the atom, in which these
energies were given by

*•- (^i)i-
where n is an integer, m is the mass of the electron, e is the charge of the electron,
h is Planck's constant and CQ is the permittivity of free space.

I
I
<D

UJ

Interatomic spacing (nm)
Figure 5.5 Broadening of the allowed electron energy states into electron 'bands' as the interatomic

spacing o is reduced. Reproduced with permission of R. H. Bube, Electronics in Solids:
An Introductory Survey, published by Academic Press, 1971.
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0
4s
3p

3s

2p
0.37 nm 1.0 nm oo

(a) (b) (c)

Figure 5.6 Energy 'spectrum1 of allowed states for (a) free electrons outside a solid, (b) band
electrons within a solid and (c) bound electrons in isolated atoms. Reproduced with
permission of R. H. Bube, Electronics in Solids: An Introductory Survey, published by
Academic Press, 1971.

If we consider what happens to these sharply defined electronic energy levels as
the atoms of a solid are brought together we find that they become broadened.
This occurs because the Pauli exclusion principle does not allow two electrons to
have completely identical states. Therefore, the energies which were identical in
the isolated atoms must shift relative to one another, and the closer the atoms are
together the more marked is the shift in available energy states. Furthermore, the
number of different energy states is dependent on the number of atoms.

This means that a discrete energy level in a particular type of atom broadens
into an allowed band of energies when a large number of identical such atoms are
brought together in a solid. The higher-energy states broaden first as the atoms
are brought closer together. The broadening of the lower-energy states, which are
closer to the atomic cores, is less marked.

If we look more at the three cases consisting of the two extreme cases of bound
electrons and free electrons and the intermediate case of electrons in a solid, we
find the following types of energy spectrum.

5.3.1 The tight-binding approximation versus the free electron
approximation

How do the extreme viewpoints of single atom versus collective electron compare?
The approach which we have just taken, considering the energy levels in the
isolated atom and then bringing the atoms together and modifying the energy
levels, is known as the 'tight-binding approximation' because we start from tightly

93



CHAPTER 5 BOUND ELECTRONS AND THE PERIODIC POTENTIAL

bound electrons in the atoms. The previous approach, beginning with the free
electron model and progressing through to a periodic potential model is known as
the free electron approximation. Both should lead to the same result if their
conditions are relaxed sufficiently.

Both are valid methods of looking at the electronic properties of materials but
approach the problem from different directions. In fact, an intermediate model by
Herring [8] has also been used to calculate the energy states of electrons in solids
by combining the best aspects of both models. This is known as the orthogonalized
plane wave method.

In metals, of course, as we have already noted, the higher-energy electrons
behave as if almost free. Therefore, the free electron approximation is more
relevant in these cases. In semiconductors and insulators, the electrons do not
become free in the same sense because the highest-occupied energy states in the
ground state are localized at the atomic lattice sites, and so in this case the tight-
binding approximation is more relevant. However, in either model we are led to
the conclusion that when large numbers of atoms are brought together, energy
bands arise and these bands are separated by forbidden energy regions or band gaps.

5.3.2 Transition from insulator to metal under pressure
What happens to the electronic properties of an insulator if it is subjected to
extremely high pressure?
Since in their ground states electrons will always occupy the lowest available
energy state, it is possible to convert an insulator to a metal under very intense
pressure as a result of the broadening of the energy bands which occurs when the
atomic cores are moved closer together.

Insulator Semiconductor Metal

Energy E

Fermi level E
F

Pressure

Figure 5.7 Effects of pressure on the allowed electron energy levels of atoms. At low pressure the
atoms are isolated. At intermediate pressure they form an insulator and at very high
pressures they form a metal. Compare with Figs. 5.5 and 5.6.
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If we make the assumption that the Fermi level does not change, then the
material will undergo a transition from insulator to metal at the point where the
two previously separated valence and conduction bands begin to overlap.

We should note that the pressures needed to cause this type of transition are
very high. For example, germanium, which is a semiconductor under normal
conditions, becomes a metal under a pressure of 120kbars (12GPa). Recent
results also suggest that solid hydrogen becomes metallic under a pressure of
2.5Mbar(250GPa).

5.4 ENERGY BANDS IN A SOLID
How are the properties of the electrons in the different energy bands qualitatively
different from each other?
We have seen how the discrete energy levels in an atom are broadened into
allowed energy bands when the atoms are brought together in a solid. The upper
energy bands, which correspond to electrons with energies above the periodic
potential wells of the atoms in the solid, contain the so-called 'free electrons'.
Below this there may be other free-electron-type bands. Finally, below the free
electron bands are the bound states. The free electron bands are constrained only
by the boundaries of the solid. The bound electrons are constrained by the local
potential wells around the atomic cores. The local ionic potentials cause a
perturbation of the wavefunctions of the free electron bands so that they are not
identical to the solutions obtained in the Sommerfeld model.

5.4.1 Width of energy band gaps
How are the widths of the energy gaps related to the periodic potential?
Clearly since the energy gaps are caused by the presence of the periodic potential
there must be some relationship between them. In fact the relationship is quite
simple. The band gaps in the electron energy levels are equal to the Fourier
components of the crystal potential. This can be understood because the electrons
behave as waves under the influence of the periodic potential.

5.4.2 Electron band structure in conventional space
How can we view the various electron bands in real space?
In real space the electrons are confined within the solid. Low-energy 'bound'
electrons cannot participate in conduction unless they are thermally excited and
escape from the atomic core. High-energy 'quasi-free electrons' migrate through-
out the solid, being constrained by the physical boundary of the solid only. The
movement of these higher-energy electrons is almost unaffected by the periodic
potential of the atomic cores.

So far we have looked only at the distribution of electrons in real space. We will
introduce later the concept of reciprocal space which can be used to describe the
electronic states of a solid in a particularly economical and elegant manner.
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LU

LU

Non-localized
energy bands

Localized
energy states

Ionic cores

Potential around
ionic core Position x

Figure 5.8 Schematic diagram of energy levels in a one-dimensional lattice, shown in real space.

5.4.3 The Fermi energy
What is the highest energy level occupied by an electron when all electrons are in
their lowest available state*
We have stated that at the absolute zero of temperature, when the electrons all
occupy the lowest available energy state, the energy of the highest occupied state is
the Fermi level. This energy level separates the occupied from the unoccupied
electron levels only when the electron configuration is in its ground state, that is
only at 0 K.

The location of the Fermi level in relation to the allowed energy states is crucial
in determining the electrical properties of a solid. Metals always have a partially
filled free electron band, so that the Fermi level corresponds to a level in the
middle of the band and this makes the metals electrical conductors. Semiconduc-
tors always have completely filled or completely empty electron bands. This means
that the Fermi energy lies between the bands, and consequently they are poor
electrical conductors at ambient temperatures.

5.4.4 Nomenclature of electron bands
How can the most important energy bands be described in a distinct and self-
consistent manner*
We shall define the highest-energy electron band containing electrons when the
material is in its ground state as the valence band. We shall define the lowest-
energy band containing unoccupied electron states when the material is in its
ground state as the conduction band, since it is through this band that electrical
conduction can take place. In a semiconductor or insulator, the distinction is clear
and we can represent the bands as shown in Fig. 5.9.

In a metal which contains a partially filled band, this band satisfies both criteria
and so is both a valence band and a conduction band. This explains some of the
confusing nomenclature of the bands in metals which occurs in the literature, in
which sometimes the free electrons are described as 'conduction' electrons and
sometimes they are described as 'valence' electrons. In a metal they are both.
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ENERGY BANDS IN A SOLID

Conduction Band
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Fermi level

Valence Band
(full)

Figure 5.9 Schematic diagram of electron energy bands in a semiconductor or insulator.

Energy E

Empty states

Fermi level

Filled states

Figure 5.10 Schematic diagram of electron energy bands in a metal.

5.4.5 Effective mass of electrons in bands
How can the motions of electrons within an energy band be described in a
simple way?
It is found experimentally that the mobility of electrons in the conduction band is
affected by how full the band is. In the case of free electrons we have shown that

h2k2

™=J^, (5-38)

where m is the mass of the electrons.
As we shall see shortly this relationship between E and k breaks down in a solid.

However, we can maintain the form of this relationship by using the relation

where now m * is an adjustable parameter which we call the effective mass. This
means that any deviations from a parabolic relationship between E and k can be

97

f)2k2

E(k] = 2nS> (539)



CHAPTER 5 BOUND ELECTRONS AND THE PERIODIC POTENTIAL

expressed as a change in the effective mass of the electrons at that point in ¿-space.
Remember that, of course, this is merely a convenient artifice which allows us to
describe the behaviour of the electrons in bands. The electron does not actually
change its mass at these energies, it is simply an expression of the changed
relationship between E and k.

The effective mass m* can be smaller or larger than the free electron mass ra.
The cause of this apparent change in the mass of the electrons is the interaction
between the electrons and the lattice in the material. Collisions between drifting
electrons and atomic sites will slow down the acceleration of an electron which
will lead to an increase in its effective, or apparent, mass.

Another way to view the situation is in terms of the curvature of the energy
bands in ¿-space. This can be interpreted in the following way: using the
relationship between energy E and wave vector k given in Section 4.2 and taking
the second derivative of the energy with respect to the wave vector gives t?2/m.
This relationship only holds exactly for a free electron parabola. When the
relationship between E and k is no longer parabolic the deviation can be expressed
in terms of a change in the effective mass so that

If -£
and consequently the effective mass can be defined by

m*=-^ , (5.41)
(d2E/d¿2)

where d E/dk2 is the curvature of the electron levels or electron band in ¿-space.
For electron bands with high curvature m* is small, while for bands with small

curvature, that is flat electron bands, w* is large. It is also worth noting that since
d E/dk2 can be negative m* can be negative. This simply means that when an
electron goes from state k to state k + 6k the momentum transfer to the lattice is
greater than the momentum transfer to the electron. The electron therefore
appears to have a negative mass.

As a simple example, consider the following energy states, as shown in Fig. 5.11.
Small effective masses occur at low k in this case, large effective masses occur at

intermediate k. Since the effective mass is determined by the curvature of the
energy band in ¿-space, this means that narrow bands necessarily contain electrons
with high effective mass. Conversely, wide bands can contain electrons of low
effective mass or high effective mass.

5.5 RECIPROCAL SPACE OR WAVE VECTOR ¿-SPACE
is there an economical way of describing all of the allowed energy states in a solid?
Earlier, in Section 4.2, we introduced the idea of the wave vector ¿. This arose
when we made a simple calculation for the solution of the wave equation for free
electrons and then for electrons in a square-well potential. A plot of energy E
against wave vector ¿ was given first in Fig. 4.1. The dimensions of ¿ are reciprocal
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(a)

(b)

(c)

(d)

dE
dk

d2E
di?

-jc/a n/a
Wave vector k

Figure 5.11 Idealized variation of electron energy £ with wave vector k. The lower diagram shows
the curvature of the electron energy band giving large effective mass at intermediate k,
but small effective mass at low k as shown in the diagram. At k values close to ±ir/a
the effective mass of the electrons is negative.

length. It tells us the spatial periodicity of the wavefunction, or if you prefer, the
number of cycles of the wave which occur in a given distance of ITT metres.

We found that for free electrons the energy depended on ¿2, and all values of k
were allowed. When the electrons are trapped, as in the square-well potential,
only certain values of k are allowed in order that the wavefunctions can meet their
boundary conditions.

In the last section we began to plot energy against k because this was useful in
determining the effective mass of the electrons. We shall find that when it comes
to describing electrons in solids plotting E against k is a very useful way of
representing the electronic properties. The plot of E against k is known as a
reciprocal space plot because the dimensions of k are m~1.
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When an electron is confined within a solid and experiences the periodicity of
the lattice this periodicity affects the relationships between E and k. Another way
of looking at this is that a wavefunction described by the wave vector k will have
different energies depending on the presence and type of the crystal lattice it
encounters. We have already noticed, for example, that the interactions between
an electron and the lattice alter its effective mass and so distort the relationship
between E and k.

5.5.1 Brillouin zones
How can periodicity of the lattice be introduced into reciprocal space?
We may think of the Brillouin zones [9] as a method for introducing the
periodicity of the crystal lattice into our model of the electronic structure of
materials. The Brillouin zone is a region in reciprocal space. Before saying more
about exactly what this Brillouin zone is, let us consider the effects of a periodic
potential on the energy levels of 'free electrons'.

We know E = h2k2 /2m for free electrons, but when we add the presence of a
periodic potential all of this changes. We know from the previous chapter that if
the energies of the electrons are below the level of the periodic potential barriers
the electrons will penetrate spatially into these potential barriers, but their
wavefunctions will be attenuated the further they penetrate. If the potential
barriers are much higher than the electron energy, then the wavefunction will be
reflected at these barriers and the electron will be contained entirely within the
potential box formed by the barriers.

5.5.2 Bragg reflection at the Brillouin zone boundaries
What effect does the lattice have on the allowed electron wavefunctions and the
relationship between energy E and wave vector k ?
The solutions of the Schrôdinger equation in the case of a periodic potential with
infinite energy barriers is simply

£" -s (T)'- <>•«>
with integer values of n, as shown in Fig. 4.3. This means that only exact discrete
values of the energy are allowed under these conditions.

If a finite periodic potential exists at the lattice sites x = ±na, then this results in
a perturbation of the solutions of the wave equation compared with the free
electron situation with the amount of perturbation increasing as the height of the
potential barriers increases. In the simplest form of periodic potential v(x) = 0 for
—na < x < na and V(x) = VQ for x = ±na. The locations where the distortion
from the free electron parabola is greatest will be the locations where the potential
is greatest. These occur at k = ±mr/a.

Now it is necessary to find what form the solutions take close to these 'zone
boundaries' where the potential is nonzero. Both the wavefunction ty and its
derivative \I/' must be continuous in real space. This is one of the conditions of
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(from above)

So at the zone boundary, the energy states in the first zone are 2V(k = n/a)
below the energy of the states in the second zone. This is the so-called 'band
gap', whereby no electron states are available with energies in the range (h2/2m) x
(7T/tf)2 ± V(k = 7T/a) because of the presence of the periodic potential. The magni-
tude of the energy gap 2V(-K/a) can, therefore, be found from the Fourier
transform of the periodic potential of the lattice.

At locations away from the zone boundary, the Fourier transform V(k) of the
potential also has a finite value, which decreases with distance in ¿-space from
the zone boundary. This means that the E versus k relationship is also distorted or
perturbed from the parabolic free-electron-like behaviour at values of k away from
the zone boundary, but the farther from the zone boundary, the less the per-
turbation. This is shown in Fig. 5.12.

The distortion or perturbation of the electron wavefunction that occurs at zone
boundaries of the periodic potential is known as Bragg reflection. The reason for
this terminology becomes clear if we consider what happens to the wavefunction.
In the limiting case of an infinite potential at the atomic or ionic sites the elec-
trons cannot stray into this region. Therefore, the electron wavefunctions must be
completely contained within the local potential well between x = ±a and the
wavefunction must meet exact boundary conditions of fy(a) = ^(—a) = 0. This is
equivalent to total reflection of the wave.

It is clear, therefore, that an infinite periodic potential will give total reflection at
the zone boundaries. If the height of the potential is reduced then the reflection will
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quantum mechanics. Therefore, the potential V(k) is not simply restricted to finite
values at the points k = ±n7r/a. Therefore, even a 'point potential' in real space
will have a finite extent in ¿-space. In fact, V(k) is the Fourier transform of V(x):

V(k) = ̂ -{a V(x) exp(ifct) Ax (5.43)
2tf J_tf

= v(^), (5.44)

and this results in the addition of an amount of energy ±V(nit/d) to the allowed
solutions of the wave equation at the 'zone boundaries.' The energies are therefore,

t?2k2

lim £(*)=- V(*), (5.45)
k-+jc/a 2m

(from below)

HmE(k)=^ + V(k). (5.46)
k^/a ¿-m
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Energy E

" a " a " a " a " a " a ° a a a a a a Wave vector k

Figure 5.12 Deformation of a free electron parabola due to a weak periodic potential.

not be perfect at the boundary and this will result in partial reflection and partial
transmission of the electron wavefunction. The ratio of reflection to transmission
depends on the height and width of the potential barriers.

Now that we have introduced the idea of the electron wavefunction being
reflected by the energy barriers of the periodic potential, let us find the condition
for this. For Bragg reflection we know that,

2a sin 0 = n\, (5.47)

where a is the lattice parameter, 0 is the angle of reflection, A is the wavelength of
the electrons and n is an integer. For simplicity let us again look at the one-
dimensional lattice. In this case sin 0 = 1 and the Bragg reflection condition is,

2a = nX

and A = 2-x/k for an electron. So that,

W7Tk = —.a

(5.48)

(5.49)

This then is the condition for reflection of the electron wavefunction in a
one-dimensional lattice of parameter a. This can easily be generalized to three
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dimensions and the concept remains the same. We now have a division of recipro-
cal or ¿-space into a number of zones, known as Brillouin zones, at the boundaries
of which reflection of the electron wavefunctions takes place.

The lattice can be divided into a number of Brillouin zones in reciprocal space,

^ ... . — 7T +7T
First Brillouin zone — to —.

a a
, n —2?r —7T j 7T 2?r

Second Brillouin zone to — and — to —.a a a a

n . -W7T -(n - l)?r , (n - !)TT nit
ntn Brillouin zone to and to —.a a a a

Since free electron wavefunctions are not reflected, and yet in a solid reflection
occurs at the Brillouin zone boundaries, we may reasonably expect that the most
severe deviation of the electron energies from free-electron-like behaviour will
occur at the Brillouin zone boundaries. This can be seen in Fig. 5.12 in which the
E versus k relationship is distorted from the free electron parabola at these
boundaries.

In the plot of £ versus k for a one-dimensional weak periodic potential shown in
Fig. 5.12, the free electron nature of the electron states is clearly apparent but with
some distortion at the zone boundaries. At the k values corresponding to the zone
boundaries transmission of an electron through the solid is prevented. The inci-
dent and reflected electron wavefunction form a standing wave. Certain energies
are therefore forbidden since there are values of E for which there is no cor-
responding value of the wave vector k.

5.5.3 The reduced zone scheme
Can the representation of the electrons in reciprocal space be made more compact
by making use of the periodicity condition?
We can take our one-dimensional plot of energy versus wave vector and map all
sections into the range —ir/a < k < n/a. This is done by using the periodicity con-
straint so that,

k } =*W + G, (5.50)

where kn is the wave vector in the nth Brillouin zone, k\ is the wave vector in the
first Brillouin zone and G is a suitable translation vector. Now any point in ¿-space
can be mapped by symmetry considerations to an equivalent point in the first
Brillouin zone, but notice that many points from the extended zone representation
can be mapped to the same point in the reduced zone representation.

This reduced zone scheme representation allows the entire electron band struc-
ture to be displayed within the first Brillouin zone. This is a very compact repre-
sentation and has distinct advantages because the electronic states can be displayed
in the most economical way in a single diagram of the first zone.
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Energy E

Band 4

Bands

Band 2

Band 1

Allowed energy bands
separated by unoccupied
band gap

a + b a + b
Wave vector k

Figure 5.13 The distorted free electron parabola due to a weak periodic potential mapped back
onto the first Brillouin zone.

5.5.4 Band structures in three dimensions
How can information about the energy levels of a three-dimensional solid be
represented in a compact manner on a two-dimensional diagram?
We have shown in a previous section the importance of plotting the electronic
energy E against the wave vector k because this gives immediate information about
the electronic properties of a material. We have also mentioned the reduced zone
representation which is useful because it presents this information in its most
compact form. However, we have only done this so far for a one-dimensional
lattice and a one-dimensional reciprocal lattice whose first Brillouin zone extends
from — Tr/a to +ir/a.

In three-dimensional crystals with three-dimensional reciprocal lattices, the use
of a compact representation is no longer merely a convenience, it is essential.
Otherwise the representation of the electronic states becomes very complex to
envisage. How then can we display the band structure information from a three-
dimensional crystal, which needs, of course, four dimensions (E, kx, ky and kz) to
describe it?
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The answer is to make representations of certain symmetry directions in the 3-D
Brillouin zone as one-dimensional E versus k plots, and to do this for several
important symmetry directions in the Brillouin zone. Only by doing this can we
get all of our information onto a two-dimensional page. You can think of this
process as cutting the Brillouin zone along certain symmetry directions. Therefore
when looking at an E versus k diagram you are looking at several slices through
different directions of ¿-space.

5.5.5 Brillouin zone of an fee lattice
What does the 'unit cell9 of an fee lattice look like when transformed into recipro-
cal space?
The face-centred cubic lattice space group has been shown above in Fig. 2.1.
Now we will look at the Brillouin zone of such a lattice in ¿-space. This is shown
in Fig. 5.14.

fee

Figure 5.14 Brillouin zone of an fee lattice in reciprocal space.

Certain symmetry points of the Brillouin zone are marked. Specifically, the F,
X, W, K and L points and the directions A, A and E. Roman letters are used
mostly for symmetry points and Greek letters for symmetry directions. The
following is a summary of the standard symbols and their locations in ¿-space:

r <o,o,o>
X <1,0,0>

W <1,1/2,0>
K <3/4,3/4,0>

L <l/2,l/2,l/2>
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5.5.6 Brillouin zone of a bcc lattice
What does the 'unit cell3 of an bcc lattice look like when transformed into
reciprocal space*
Similarly, the Brillouin zone of a bcc lattice can be described in terms of its prin-
cipal symmetry directions. The zone is shown in Fig. 5.15. The symmetry points
are conventionally represented as F, H, P and N and the symmetry directions as A,
A, D, £ and G. The various symmetry points are,

r <o,o,o>
H <1,0,0>
P <!,!,!>
N <1, 1, 0 >

Notice that a bcc lattice in real space has a Brillouin zone in reciprocal space
that has fee symmetry, while an fee lattice in real space has a Brillouin zone in
reciprocal space that has bcc symmetry.

bcc

Figure 5.15 Brillouin zone of a bcc lattice in reciprocal space.

5.6 EXAMPLES OF BAND STRUCTURE DIAGRAMS
What does the electron band structure diagram of the first Brillouin zone look like
when represented in two dimensions?
Figures 5.16 and 5.17 show the electron band structures of two real materials,
copper and aluminium. Aluminium is seen to contain electrons which in their
energy versus wave vector relationships are very close to free electrons.

5.7 CONCLUSIONS
How does the presence of a periodic potential affect the energies and behaviour
of electrons?
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Wave vector k

Figure 5.16 Electron band structure diagram of copper.
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Wave vector k.

Figure 5. / 7 Electron band structure diagram of aluminium. Reproduced with permission from B.
Segal, Phys. Rev., 125, 1962, p. 109.

In this chapter we have looked at the behaviour of electrons under the influence of
a periodic potential due to the lattice ions. The calculations, although still over-
simplified, produce some interesting results such as the existence of localized low
energy states, and higher-energy itinerant electron states with the two groups of
states separated by a region of forbidden energy known as the band gap. Two diff-
erent approaches to describing the electrons have been discussed, one beginning
from modifying the energy states in isolated atoms, the other beginning with free
electrons and modifying their behaviour with the effects of a periodic potential. It is
possible to distinguish between conductors and insulators on the basis of this model,
the conductors have electrons occupying the higher-energy itinerant states, while
the insulators have electrons confined to the localized energy states only.

We should now be in a position to understand the comment made in Section
2.1, that the differences in the electronic properties of materials are due more to
the ionic lattice than to the electrons themselves. Since all electrons are identical
the collective properties of the electrons are determined by the boundary condi-
tions imposed on the electron wavefunction. The boundary conditions are periodic
and are dictated by the ionic lattice. Without the lattice the electrons could have
any energy value.
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EXERCISES
Exercise 5.1 Effective mass of electrons in bands
Explain the physical reasons why electrons in energy bands can behave as if they
have different masses. Derive an expression for the effective mass and explain its
significance in terms of the curvature of the electron bands. Do the electrons
actually have a different mass?

Exercise 5.2 Origin of electron bands in materials
Explain how electron energy bands arise in materials. First, beginning your discus-
sion from the free electron approximation and secondly beginning your discussion
from the tight-binding approximation. The periodic potential in a one-dimen-
sional lattice of spacing a can be approximated by a square wave which has the
value V = — 2eV at each atom and which changes to zero at a distance of Q.la on
either side of each atom. Estimate the width of the first energy gap in the electron
energy spectrum.

Exercise 5.3 Number of conduction electrons in a Fermi sphere of known radius
In a simple cubic, quasi-free electron metal the spherical Fermi surface just touches
the first Brillouin zone. Calculate the number of conduction electrons per atom in
this metal.

Exercise 5.4. Boundary conditions and solutions of the wave equation
If an electron is confined inside a material, which is represented as a region with a
constant potential Vo> show that a solution to the Schrôdinger equation is

$ = A exp(ifoc) + B exp(-ifoc),

where k2 = 2m(E - Vo)h2. What happens to the solutions to the wave equation
when boundary conditions are applied?
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Explain why the observable quantity associated with the wavefunction is the
intensity |\I>|2( = \ti*\tr) and not simply ̂  the wavefunction itself. What does |*|
actually represent?

Exercise 5.5 Electrons in a periodic potential
Suppose that now the electron inside a material is subjected to a periodic potential
with spatial periodicity (i.e. lattice parameter) a. Show that under these conditions
the value of the wavefunction # at any point x in .real space must be equal to its
value at (x + no) where n is an integer (with the limitation on n that x + na must
lie within the periodic potential if it is of finite extent).

Furthermore, show that under these conditions the allowed values of k must
necessarily be k = Inn/Ma where n is an integer (in this case with the limitation
that n cannot exceed the number of potential wells N in the lattice, or equivalently
the number of lattice sites - compare, for example, with the allowed modes of
vibration of a one-dimensional lattice). Explain the significance of this, and prove
that k = 0 is not an allowed solution, except in the trivial case where A and B are
both zero.

Exercise 5.6 Electron energy bands
Explain what is meant by: (i) energy band, (ii) band gap, (iii) conduction band, (iv)
valence band. What causes electron energy bands to occur in materials and how do
metals, semiconductors and insulators differ in terms of their electron band
structures?

Band structure diagrams of two unknown materials are shown below. What can
you tell about the nature of these materials from the diagrams? In the second
material calculate the optical wavelengths at which you would expect the material
to be transparent and the optical wavelengths at which you would expect it to be
absorbent.

K X

Figure 5.18 Band structure of unknown material.
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k

Figure 5./9. Band structure of unknown material.
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6 ELECTRONIC PROPERTIES OF METALS

OBJECTIVE
In this chapter we bring together the basic concepts discussed in earlier cha-
pters to provide a broad description of the electronic properties of metals. The
main idea is that metals have some electrons which occupy the higher-energy
'free' electron levels, and can therefore migrate throughout the material. These
are the so-called conduction electrons which contribute to both electrical and
thermal conduction. These electrons also enable us to explain the optical pro-
perties of metals, in particular the high reflectance of metals in the visual
range of the spectrum. Since it is the electrons which are close to the upper
surface of the electron 'sea' which are most important in defining the electronic
properties, we look at this 'Fermi surface' in greater detail here and discuss
some of the methods of representing this important electronic characteristic of
a metal.

6.1 ELECTRICAL CONDUCTIVITY OF METALS
How do we account for the range of conductivities of materials?
We have mentioned the wide range of observed conductivities in materials ranging
from 10~15 Í7"1 m"1 in sulphur to 108 Í2"1 m"1 in copper. In order that we can
discuss this range of properties systematically, we shall divide the materials into
conductors and insulators, with the semiconductors such as germanium and
silicon being classed with the insulators.

Energy E

Empty states

Fermi level

Filled states

Figure 6.1 Schematic band structure diagram of a metal.
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In this chapter we look at the metals. Metals are typically good electrical and
thermal conductors and good reflectors of light in the visible spectrum. These prop-
erties are all due to the free, or more precisely quasi-free, electrons in the material.
Metals contain a partially filled electron band through which the electrons can
move relatively freely in order to conduct heat and electrical current, and the
electrons in this band can absorb photons of low energies simply by being excited
to slightly higher, unoccupied electron levels within the same energy band, later
returning to lower unoccupied levels with the emission of a photon.

Figure 6.1 shows a very simple schematic diagram of the highest occupied
energy band in a metal. This schematic tells us nothing about the dependence of
energy E on the wave vector k in this material. However, we should note that the
Fermi energy lies in the middle of an allowed band in a metal and this means that a
metal has a Fermi surface, that is a connected set of highest occupied energy levels
in è-space.

6.2 REFLECTANCE AND ABSORPTION
How are the various optical properties of materials related to each other and to the
electrical properties?
We have mentioned in Section 1.4 that the optical properties of materials can be
represented by two constants, either n and ¿, or alternatively e\ and £2, as dis-
cussed in Section 3.4.1. The dielectric 'constant' of the material is e = £o(£i + Í£i)5

where SQ is the permittivity of free space. The two components of the complex
relative dielectric constant er = e\ + ki are related to n and k by

£l=n2-k\ (6.1)

€2 = Ink. (6.2)

Both E i and £2 are dimensionless. The term £2 is known as the absorption. It is
also related to the electrical conductivity <j(u) by

£2M=^ (6.3)
ueo

at a given frequency of excitation ÜA This expression was given by Drude in the
classical theory of electrons in metals.

This means that a good electrical conductor, which has a high value of cr(c<;), is a
good absorber of light. A good electrical conductor is also known to be a good
reflector of light (i.e. high R). This at first seems to be a contradiction. How can a
good absorber also be a good reflector? We need to resolve this seeming
contradiction immediately. The reflectance R is related to the components EI and
62 of the dielectric constant (see Section 3.4.2) by the relation,

Je\ + ef + 1 - \h.(Je\ + £\ + d)
R = V V . (6.4)

^e\ + s\ + 1 + ̂ 2(̂ 1 + e\ + ei)
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We know that high k leads to high £2 and high R. What do we mean by
absorption in this context? We really mean that the light does not penetrate the
solid very far. Clearly if the light is either reflected or transmitted, then with high
absorption the light is not transmitted and so by conservation of energy the light
must eventually be reflected back. The mechanism for this process is absorption of
light by free electrons, excitation of the electrons to higher-energy states, and then
de-excitation of the electrons with the emission of photons. In short, absorption
followed by immediate re-emission of the light gives reflection.

6.2.1 Optical properties and electron band structure
How can the optical properties be related to the electronic structure of the
material*
Having stated this relation between absorption and reflectance we need to give a
brief explanation in terms of the electron theory. In order to absorb incident light
the electrons must have available states which they can move to at an energy AE
above their present energy state, where

AE = huj>, (6.5)

u is the frequency of the light and h is Planck's constant divided by 2?r.
Immediately then it is apparent that an insulator with a filled valence band,

empty conduction band and band gap Eg > huj cannot absorb the photon with
energy feu;, because there are no available energy states into which the electrons
can be excited which correspond to the correct gain in energy.

Metals, however, do have such energy states available at low energies because
electrons can be stimulated to slightly higher available levels within the same band
(intraband absorption) as shown in Fig. 6.2. So the metals have a high absorption
at low frequencies. Once the electrons in a metal have absorbed the light they can
return to their available lower energy state with the emission of a photon of
identical energy, or in some cases of lower energy. This leads to a high reflection
coefficient R in metals.

Insulators on the other hand have low absorption at low frequencies, but as the
energy of the incident radiation increases a frequency <x>0 is reached at which
the energy of the incident photons equals the energy of the band gap,

hujQ = Eg. (6.6)

Beyond this frequency an insulator has a high absorption. The mechanism by
which the electrons absorb energy is shown in Fig. 6.2 where the electrons are
stimulated from the valence band to the conduction band. Each semiconductor or
insulator has its own characteristic energy gap Eg. This means that if we look at
the reflection or absorption spectrum of a material we can soon tell whether it is
a metal, semiconductor, or insulator, because high reflectance at low energies is a
property of metals, whereas a low reflectance at low energies combined with high
reflectance at high energies is a property of insulators.
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Energy E J

Incident photon
flu)

Metal

Energy E

Incident photon
flu)

Insulator

Figure 6.2 Schematic metal and insulator band structure diagrams showing absorption of photons.

6.3 THE FERMI SURFACE
How can we describe the Fermi level in three dimensions?
We have discussed the concept of a Fermi energy £F and a Fermi level which is the
highest occupied energy state in a metal in its ground state. Now we will
generalize this idea further to the Fermi surface [1]. Excellent introductions to the
Fermi surface have been given by Ziman [2] and by Mackintosh [3], The Fermi
surface is the plot of the Fermi level in three-dimensional ¿-space. The volume
contained within the Fermi surface represents all the occupied energy levels when
the material is in its ground state.

In the simplest case the Fermi surface for free electrons is a sphere since the
energy is given by an expression which depends on the sum of the squares of the k
vectors in each direction:

2

Since this expression for energy is not directionally dependent, the Fermi surface
for free electrons will be spherical in è-space.
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In other cases, in particular in real metals, the Fermi surface is not exactly
spherical in ¿-space, but for most metals which have upper electron states which are
quasi-free, the Fermi surface is more or less spherical in shape when plotted in the
extended zone representation. There will, of course, be local perturbations due to
the lattice, because of Bragg reflection at the Brillouin zone boundaries, as discussed
in Section 5.5.2. This results in the Fermi surface having bulging contours close to
the zone boundaries, as in the case of copper, silver and gold, for example. The forms
of these Fermi surfaces have been discussed in detail by Cracknell and Wong [4].

6.3.1 The Fermi surface in the reduced zone scheme
Can the entire description of the allowed energy levels be represented in the first
Brillouin zone alone?
As a consequence of the periodicity of the lattice we have shown in the previous
chapter that the reciprocal lattice in ¿-space can be subdivided into Brillouin
zones. In the one-dimensional case, the first Brillouin zone extends from —(it/a) to
where +(x/a) is the lattice parameter. A symmetry principle comes into play here
whereby the energy of a particular band E(k) is a periodic function of the
reciprocal lattice

-2*/a

Wave vector k

Figure 6.3 Extended- and reduced-zone representations of electron energy levels.
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This leads to the periodic-zone scheme shown in Fig. 6.3 in which each energy
state in a higher Brillouin zone can be mapped back to an equivalent point in the
first zone.

The important result here is that the entire energy band structure of a material
can be represented in the first Brillouin zone by transforming all the allowed
energy states E(k + mr/a) to the equivalent point in the first zone using the
reduced-zone scheme:

4+^H(H
£(* + —)-+£(*). (6.10)

V /

Therefore every point in every zone has an equivalent point in the first Brillouin
zone.

6.3.2 Advantages and disadvantages of the reduced zone scheme
Does the compact representation of the reduced zone scheme lead to any
disadvantages in visualizing the electronic structure of a material?
An obvious advantage of the reduced zone representation is that the entire electron
band structure of the material can be plotted within one Brillouin zone. This allows
for compact representation of the electronic properties, particularly when we are
dealing with three dimensions. A disadvantage is that the electron energy levels,
which may appear to be relatively simple in the extended zone scheme, can become
very complicated to visualize in the reduced zone scheme. A good example of this is

LLJ

X W K X

Wave vector k

Figure 6.4 Free electron parabola represented in the reduced zone scheme in the first zone of an fee
lattice, which shows how a very simple situation can appear to be superficially com-
plicated under this transformation. Reproduced with permission from R. G. Chambers,
Electronics in Metals and Semiconductors, published by Chapman & Hall, 1990.
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the free electron parabola which, when mapped onto the first zone of an fee lat-
tice (in the absence of any periodic potential), is transformed as shown in Fig. 6.4.
This corresponds to the 'empty lattice' approximation discussed by Shockley [5].
Despite the extremely simple nature of the relationship between E and k in the
case of free electrons, the representation in Fig. 6.4 looks superficially quite com-
plex. Even weak Bragg reflection at the Brillouin zone boundaries can make this
diagram appear much more complicated.

A Fermi surface which also may have a relatively simple distorted spherical
shape in the extended zone scheme can become an extremely complex shape in the
reduced zone scheme. An example of this is the Fermi surface of aluminium which
is shown later (see Section 6.3.5).

63.3 Free electron Fermi surface
What does the free electron Fermi surface look like in the extended zone scheme in
two dimensions?
For simplicity we will begin by considering Fermi surfaces in a hypothetical two-
dimensional solid. This is easier to represent and discuss than in three dimensions.
Once the general idea has been expounded we will go on to consider examples in
three dimensions.

We have shown above that the Fermi surface of free electrons in ¿-space is
spherical, and hence in two dimensions it is circular, if we have no Bragg reflection
(which is equivalent to an empty lattice). When the Fermi surface is entirely
contained within the first Brillouin zone, the Fermi surface in the reduced zone
scheme is also circular. For simplicity we consider this situation in relation to a
square lattice as shown in Fig. 6.5.

Energy
isopotentials

radius vector is
waveWector k

Figure 6.5 Free electron Fermi 'sphere1 in two-dimensional k-space.

Now let us consider a metal with more electrons so that not all electron states
can be contained in the first Brillouin zone. In this case in the extended zone
scheme the Fermi surface is again circular, as shown in Fig. 6.6, but the Fermi
surface extends beyond the first zone. Now in the reduced zone scheme the
situation appears more complicated, as shown in Fig. 6.7.

119



CHAPTER 6 ELECTRONIC PROPERTIES OF METALS

Figure 6.6 Free electron Fermi 'sphere1 in two-dimensional k-space extending beyond the first zone.

When the free electron Fermi sphere is folded back into the first zone in the
reduced zone scheme, the appearance of the surface is complicated by the
transformation.

1 st zone 2nd zone 3rd zone

Figure 6.7 Free electron Fermi 'sphere' mapped back onto the first zone in two-dimensional k-space.

The important point to note here is that for free electrons:

1 The Fermi surface in fe-space in the extended scheme is perfectly spherical.
2 When projected back into the first zone using the reduced zone scheme the

spherical surface can look very different.

6.3.4 Fermi surface in a periodic potential
How does the presence of a periodic potential change the form of the Fermi surface?
Once we have introduced a weak periodic potential the Fermi surface in ¿-space
becomes distorted by Bragg reflection even in the extended zone scheme. In our
two-dimensional example the distortion from circular appears as shown. The
amount of distortion from circular energy levels depends on the strength of the
Bragg reflection at the zone boundaries, which alters the relationship between
E and k.

It can be seen from the one-dimensional section of the E versus k diagram that
an energy gap arises at the Brillouin zone boundary. This is a direct result of the
periodic potential and the size of the gap depends on the strength of the periodic
potential wells. The energy gap is caused by Bragg reflection by the lattice of elec-
trons with wave vectors close to the zone boundary. Clearly then not all the
electrons are reflected in this way.
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Energy
isopotentials

Radius vector is
wave vector k

Figure 6.8 Distorted two-dimensional Fermi 'sphere' in the first Brillouin zone resulting from the
effect of a periodic potential.

Occupied states
Unoccupied states WaveWector k

Figure 6.9 One^dimensional electron energy levels in a rectangular first Brillouin zone showing
band gaps at the zone boundary. If the reciprocal lattice is rectangular instead of square
the energy gaps occur at different energy levels in the different directions, as shown
here. This means that the Fermi surface can touch the zone boundary in one direction
(in this case the ky direction) but not in the other direction (in this case the kz direction).

If we only have a small number of valence electrons, for example one electron
per atom in the monovalent metals Cu, Au, Ag, then the Fermi surface is still
relatively simple. Of course, if the Fermi surface lies well inside the first zone (as in
level 1 in Fig. 6.8) then the deviation from the circular will be insignificant. How-
ever, as the band expands to fill the first zone and the Fermi surface gets closer to
the zone boundary it will distort to meet the zone faces (e.g. level 3). Larger
numbers of electrons will push the Fermi level into the second zone (e.g. level 4).

Once we have parts of the Fermi surface in the second zone, we usually fold
these back onto the first zone to obtain a more compact reduced zone represen-
tation. It is at this stage that the representation of an essentially rather simple
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Figure 6.10 Extended zone representation of two-dimensional distorted Fermi 'sphere'.

\

Figure 6.11 Reduced zone representation of 2-D distorted Fermi 'sphere'.

Fermi surface can take on a very complicated appearance as shown in Figs. 6.10
and 6.11.

6.3.5 Three-dimensional Fermi surfaces of metals
How does the Fermi surface appear in three dimensions?
Having looked briefly at the problem of mapping the Fermi surface in two-
dimensional ¿-space we now have a much better idea of what to expect in three
dimensions when we look at the Fermi surfaces of real metals.

The first metal for which the Fermi surface was completely mapped in ¿-space
was copper. This work was performed by Pippard [6,7] using measurements of the
anomalous skin effect. The Fermi surface of copper is particularly easy to visualize
because it all lies in the first Brillouin zone. From our discussion of the two-
dimensional examples above, in which the Fermi surface that was contained
entirely within the first zone was circular, we may expect the Fermi surface of
copper to be approximately spherical. This is indeed the case: the surface does,
however, have necks extending towards the Brillouin zone boundaries. This is
caused by Bragg reflection where the Fermi surface comes close to the zone bound-
ary. The shape of the Fermi surface resembles a 'diving sphere' with portholes.
This is shown in Fig. 6.12. Both silver and gold have Fermi surfaces with similar
shapes to that of copper.

In divalent calcium, which has of course two outer electrons per atom, the
Fermi surface extends into the second Brillouin zone. Again in the extended zone
scheme, the Fermi surface is approximately spherical. However, when folded back
onto the first zone in the reduced zone scheme it looks quite different, resembling
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Figure 6.12 Three-dimensional Fermi surface of copper.

a 'coronet'. Divalent beryllium also has a coronet-shaped Fermi surface; however,
since it solidifies with hexagonal symmetry the surface in reciprocal space has
sixfold symmetry.

Aluminium, being trivalent, has three outer electrons. Its electron bands are very
close to free electron parabolae, and its Fermi surface if plotted in the extended
zone scheme is fairly simple in shape, being almost spherical and extending into
the third Brillouin zone. Again once it is folded back onto the first zone it takes a
very different form, which has come to be known as the 'monster'. This is shown
in Fig. 6.13.

third band fourth band
Figure 6.13 Three-dimensional Fermi surface of aluminium.
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Figure 6.14 Three-dimensional Fermi surface of lead.

Lead has four valence electrons and its Fermi surface extends into the fourth
Brillouin zone. In this case the Fermi surface in the first zone is extremely
complicated forming a 'pipeline maze', as shown in Fig. 6.14.

6.3.6 Methods of determining the Fermi surface
How can we examine the shape of the Fermi surface of a metal?
First we need to understand why measurements of the Fermi surface are
important. Recall that the classical Drude metal of electrons in solids failed over
the prediction of the specific heat capacity of metals. This was because even the
free electrons in the conduction band of a metal are not able to absorb thermal
energy unless they are within an energy k^T of the Fermi surface. This means that
most of the electronic properties of a metal are determined by electrons lying at,
or just below, the Fermi surface. Clearly the electrons close to the Fermi surface
are most important in determining those properties of a metal which depend on
the conduction electrons. We conclude therefore that by knowing the details of the
Fermi surface we can make predictions about many of the properties of a metal.

There are a number of different measurements that can be made which give
information about the Fermi surface. For a detailed description of these consult
Ashcroft and Mermin [8] who have devoted an entire chapter to methods of
measuring the Fermi surface. We list here only the most important techniques used:
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THE FERMI SURFACE

Linear dimension
(Magnetoacoustic
effect)

Region of contact
(Magnetoresistance)

Extremal area
(de Haas-van Alphen
effect)

Number of electrons
in a "slice" (Positron annihilation)

Figure 6.15 Information that can be obtained about the Fermi surface from various physical
measurements as described by Mackintosh [3].

(i) de Haas-van Alphen effect
(ii) Magnetoacoustic effect
(iii) Ultrasonic attenuation
(iv) Anomalous skin effect
(v) Magnetoresistance
(vi) Cyclotron resonance
(vii) Positron annihilation.

Each of these measurements gives different information about the Fermi
surface. These are depicted in Fig. 6.15.

The de Haas-van Alphen effect [9] is the most important technique which is
used to probe the Fermi surface. From these measurements the extremal area
(i.e. largest cross-sectional area) of the Fermi 'sphere' can be found along different
directions. The magnetoacoustic effect enables the linear dimension (i.e. largest
diameter) of the Fermi 'sphere' to be calculated. In the absence of a magnetic field
the conventional ultrasonic attenuation also gives information about the Fermi
surface; however, in this case the interpretation in terms of Fermi surface geom-
etry is more complicated.
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The anomalous skin effect, which can be used to measure the curvature of the
Fermi surface in ¿-space, is one of the oldest techniques used for Fermi surface
measurements. The penetration of the magnetic field into a solid at higher
frequencies deviates from the classical skin effect equation and it can be shown
that the field penetration becomes dependent entirely on certain features of the
Fermi surface geometry (e.g. the curvature) at sufficiently high frequencies.

Magnetoresistance measurements, that is the dependence of electrical resistance
on magnetic field, can be used to find the region of contact of the Fermi surface
with the Brillouin zone boundary since the magnitude of this contact affects the
conductivity. Cyclotron resonance, the circular motion of a charged particle mov-
ing in a plane normal to a magnetic field, can also be used to investigate the Fermi
surface. Specifically, it can be used to find the electron velocity on the Fermi surface.

Finally, positron annihilation can be used to find the number of electrons in a
two-dimensional slice through the Fermi 'sphere.' When the material is bom-
barded with positrons the electrons annihilate the positrons yielding two photons.
The momentum of the emitted photons can be used to determine the momentum
distribution of the electrons in the metal. This can then be used to indicate the
number of electrons in a given slice through ¿-space.

6.3.7 The de Haas-van Alphen effect
How does the differential susceptibility of a metal depend on the applied field
strength?
The de Haas-van Alphen effect is the most important technique used for obtaining
information about the Fermi surfaces of metals. At low temperatures and under
high magnetic fields (typically H > 5kOe or 400 kAm"1) it was found that the
differential susceptibility dM/dH of metals was dependent on the field strength in
an oscillatory manner.

Reciprocal magnetic field
1/H (A-Vm)

Figure 6.16 de Haas-van Alphen oscillations. Reproduced with permission from R. G. Chambers,
Electrons in Metals and Semiconductors, published by Chapman & Hall, 1990.
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When the differential susceptibility is plotted against 1/H this periodic depen-
dence is shown most clearly, although often two or more periods are superposed,
as shown in Fig. 6.16. Similar behaviour has been observed in the conductivity and
the magnetostriction. The former is known as the Shubnikov-de Haas effect. Two
methods are widely employed to measure these de Haas-van Alphen oscillations.
One uses a torque magnetometer and simply measures the oscillations in angu-
lar position of a sample of the metal as the field strength H and magnetization M
are increased.

The second method uses field pulses and measures the voltage induced in a
flux coil wound on the sample. Since the voltage from the flux coil will be
V = NA dB/dt where N is the number of turns and A is the cross-sectional area it
follows that v-«N4+ffi)?' <«•">
and the rate of change of magnetic field dH/dt is known, so that dM/dH can be
calculated.

6.3.8 Mechanism of the de Haas-van Alphen effect

Why do the electrons cause these oscillations in the sucsceptibility?
The energy of free electrons at the Fermi surface can be equated to the cyclotron
resonance frequency c<;c,

and knowing that the cyclotron frequency depends on the magnetic field
according to the relation u;c = eB/m, it follows that the energy levels are

*-H)"
The effect of the applied magnetic field is to cause the free electron energy levels

to group together with energies around (w + l/2)feu;c. Considering the free
electrons to be restricted to a plane, the density of states at huc is

7T&2wu;c 7rk2eB
D(hwc)=—T—= . . (6.15)

Consequently, the density of states at the Fermi level will reach a maximum
each time the energy levels grouped around (n + l/2)t?uc have an energy equal to
that of the Fermi energy

/ 1 \ heB &k\
[n+- = —£ (6.16)
\ 2/ m 2m

and this will occur periodically as the strength of the magnetic field is changed.
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Both magnetic susceptibility and electrical conductivity in metals depend on the
density of states at the Fermi level. It, therefore, follows that both of these
quantities will vary periodically as the applied field is changed. Specifically,
maxima in both quantities may be expected when

*=f(^W <6'17)
The free electron Fermi surface will have an 'extremal area' in ¿-space of

Aext = **E. (6.18)

This 'area' is in units of m~2. Therefore if Bn and Bn+\ are values of the magnetic
induction at which successive peaks occur in differential susceptibility (de Haas-
van Alphen) or conductivity (de Haas-Shubnikov) then

1 1 2-xe
ñ—/r = fc¿—' (6-19)
&n+\ Bn /7/lext

and this provides a simple method of determining the 'extremal area' Trfep at the
Fermi surface along the direction of interest. The measurement can be repeated in
different directions to gain more complete information about the form of the
Fermi surface in three dimensions.
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EXERCISES

EXERCISES
Exercise 6.1 Brillouin zones in a two-dimensional lattice
Make a plot of the first two Brillouin zones of a rectangular two-dimensional lat-
tice with unit vectors along the x and y directions of a = 0.2 nm, and b = 0.4 nm.
Give its dimensions in m"1; calculate the radius of the free electron Fermi sphere
if the atom has valence 1; draw this sphere on the first Brillouin zone; and show
the electron band structure for both the first and second energy bands, assuming
there is a small gap at the zone boundary.

Exercise 6.2 Number of k states in reciprocal space
Show that the number of different k states in the reciprocal space of a simple cubic
lattice is equal to the number of lattice sites.

Exercise 6.3 Fermi energy of sodium and aluminium
Assuming that the free electron model applies, calculate the Fermi energy of body-
centred cubic Na and face-centred cubic Al. The dimensions of the cubic unit cells
in the crystal lattices are 0.43 nm and 0.40 nm respectively.

Exercise 6.4 Brillouin zones
Assuming idealized free electron behaviour in a three-dimensional simple cubic
lattice, calculate the ratio of the energy of an electron at the corner of the first
Brillouin zone to the energy of an electron at the midpoint of a face of the first Bril-
louin zone.

If a metal has a cubic lattice with parameter of 0.3 nm and its Fermi surface just
touches the Brillouin zone boundary, determine the Fermi energy, the number of
conduction electron states NQ(£) per unit volume, and the density of states D(E)
per unit volume at the Fermi level.

Exercise 6.5 Electron density of states at the Fermi level
If copper has a Fermi energy of 7 eV, calculate the density of states D(£) (i.e. the
number of states in either a 1J or a 1 eV interval of energy) in 1 m3 of the material
at the Fermi level, assuming an idealized free electron model.

Again assuming conduction electrons behave as idealized free electrons, calcu-
late the Fermi energy for a material such as silver which has 6 x 1028 conduction
electrons per cubic metre.

Exercise 6.6 The de Haas-van Alphen effect
If the susceptibility of gold and aluminium exhibit de Haas-van Alphen periodici-
ties in a field of 2 x 10~5 T~1 and 1 x 10~5 T"1, respectively, calculate the extre-
mal area of the Fermi surface normal to the field, the wave vector &F in m"1 at the
Fermi surface and the Fermi energy £F in electron volts, assuming that both metals
can be treated as 'free-electron-like'.
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7 ELECTRONIC PROPERTIES OF SEMICONDUCTORS

OBJECTIVE
This chapter discusses the electron band structure of semiconductors and
shows how the occupancy of the electron energy levels in these materials is
fundamentally different from metals. The reason for this is that in semi-
conductors and insulators in their lowest-energy state, the electron bands are
either filled or empty. This means that it is very difficult for the electrons to
move under the action of an electric field because it would result in an increase
in energy, and such energy states are not immediately available. Hence the con-
ductivity is low. A vast range of semiconductor devices based on the properties
of semiconductor junctions exist. These include devices which are designed for
particular current-voltage characteristics, such as diodes and transistors, and
optoelectronic devices such as photodetectors and photoemitters. The principles
of their operation remain broadly the same. We will touch on the main con-
cepts required for understanding them in this chapter. We will look at some
of these semiconductor devices in more detail when we deal with specific
applications in Chapters 11-15.

7.1 ELECTRON BAND STRUCTURES OF SEMICONDUCTORS
How does the electron band structure of a semiconductor differ from that of a metal?
The electronic band structures of semiconductors and insulators are fundamen-
tally different from those of metals because of the existence of the band gap which
lies between a filled valence band and an empty conduction band. Although the
energy of the electrons varies with the wave vector k, a more simplified band
structure representation is often used for semiconductors. This is the 'flat band'
approach which merely represents the allowed energy levels without reference to
the corresponding values of k. This approach, which is adequate for most
purposes, is used widely here and in subsequent discussion of the electronic
structure of semiconductors. One aspect which the flat band model does not
represent is the difference between direct and indirect band gap semiconductors.
The direct band gap materials, in which the top of the valence band and the
bottom of the conduction band are located at the same point in ¿-space, are very
important in optoelectronic applications.

The electronic theory of semiconductors was first worked out by Wilson [1,2].
The initial concept was that the semiconductors and insulators have highest
occupied electron states which are localized in the ionic potentials, as shown for
example in Fig. 5.1. These cannot therefore contribute to electrical conduction
throughout the material. A better concept is simply that even if the top-most
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occupied band extends throughout the material the electrons cannot conduct if it
is completely filled. In very simple terms then the band structures of metals,
semiconductors, and insulators can be represented as shown in Fig. 7.1.

Insulator

Figure 7.1 Simplified band structure diagrams of a metal, semiconductor and insulator. Typical
values of the band gap are OeV in metals, 0.5-5.0 eV in semiconductors and 5eV or
greater in insulators.

Table 7.1 Typical band
gaps of semiconductors.

Material

Ge
Si
GaAs
GaP
InAs
GaSb
InSb
SiC
Te

Band gap Eg (eV) at OK

0.75
1 .17
1.5
2.32
0.43
0.81
0.23
3.0
0.33

Direct/indirect gap

Indirect
Indirect
Direct
Indirect
Direct
Direct
Direct
Indirect
Direct

I eV= 1.602 x 10 I9J, visible light range is 2-3 eV.

Typical values of the band gap in various semiconductors and insulators are
shown in Table 7.1.

7.1.1 Band structure diagrams
What band structure representation is used to interpret and predict the electronic
properties of semiconductors?
Many of the electronic properties of semiconductors can be described by reference
to the above simplified energy band diagrams. In fact you will find most textbooks
base their whole discussion on these diagrams. However, the true band structure
diagrams (energy versus wave vector plots) are much more complicated [3-5].

7.1.2 Direct and indirect band gaps
What do we mean by direct and indirect band gap semiconductors?
In some cases the top of the valence band and the bottom of the conduction band
of a semiconductor lie at different points in ¿-space. This is called an indirect
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CHAPTER 7 ELECTRONIC PROPERTIES OF SEMICONDUCTORS

band gap. In other cases they lie at the same point in ¿-space. This is called a direct
band gap. These two cases are shown schematically in Fig. 7.2. The presence of a
direct band gap has important consequences for optical applications of a semi-
conductor as we shall see later, because the probability of electronic transitions
across the band gap is higher in materials with a direct band gap.

Direct transition Indirect transition
Figure 7.2 Direct and indirect band gaps in a semiconductor.

Since we have already learned how to interpret these diagrams in the case of
metals, we shall look at the band structures of germanium, silicon, and gallium
arsenide in ¿-space. These are shown in Figs. 7.3, 7.4, and 7.5 respectively.
In these diagrams, the band gaps are clearly shown and have the values 0.7 eV
in germanium, 1.1 eV in silicon and 1.5 eV in gallium arsenide. Notice that both

Wave vector k
Figure 7.3 Band structure diagram of germanium. Reproduced with permission from D. Brust,

Phys. Rev., AI34, 1964, p. 1337.
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Wave vector k

Figure 7.4 Band structure diagram of silicon.

K=ic/a (1,1,1)
L

k=2ic/a (1,0,0)
X

Wave vector k

Figure 7.5 Band structure diagram of gallium arsenide.

germanium and silicon have an indirect band gap, whereas gallium arsenide has a
direct band gap.

In transforming from this type of band structure diagram to the simplified flat
band structure diagrams the connected energy levels above the gap are represented
as one continuous band while the connected energy levels below the gap are
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CHAPTER 7 ELECTRONIC PROPERTIES OF SEMICONDUCTORS

represented as one continuous band. However, all information about their loca-
tions in ¿-space is lost as part of the simplification.

7.1.3 Position of Fermi level in semiconductors
Where does the Fermi level in semiconductors lie relative to the conduction and
valence bands?
In the ground state of a semiconductor there are no partially filled bands, just a
filled valence band and an empty conduction band. Therefore the Fermi level,
which separates the filled from the empty states, lies in the band gap. Conse-
quently, semiconductors do not have a well-defined Fermi surface, in fact we can
argue that they do not have a Fermi surface in any meaningful sense.

7.1.4 Variation of electron bands with interatomic spacing
If the interatomic spacing is changed what happens to the electron band structure?
As the interatomic spacing decreases so the electron energy bands broaden. This
means that the band gap in a semiconductor should be reduced under hydrostatic
pressure. This is found to occur in practice. So, for example, germanium which is
known to be a semiconductor under normal conditions becomes a metal under
12GPa (IZOkbar) of hydrostatic pressure.

7.2 INTRINSIC SEMICONDUCTORS
What is an intrinsic semiconductor?
Intrinsic semiconductors are those materials with relatively small band gaps.
In these cases, a number of electrons can be thermally stimulated across the band

CONDUCTION
BAND

VALENCE
BAND

Intrinsic semiconductor Intrinsic semiconductor
at OK at 300K.

Some electrons have
been thermally excited
into the conduction band
leaving behind holes in
the valence band.

Figure 7.6 Schematic band structure diagram of an intrinsic semiconductor at absolute zero of
temperature, when the conduction band is empty, and at 300 K when some electrons
have been thermally stimulated into the conduction band. The numbers in the
conduction band depend on the size of the band gap and the temperature.
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INTRINSIC SEMICONDUCTORS

gap at room temperature (300 K), into the conduction band as shown in Fig. 7.6.
Once in the conduction band these electrons contribute to the electrical
conductivity, as do the 'holes' which are left behind in the valence band.

7.2.1 Thermal excitation of electrons into the conduction band
How is the number of electrons in the conduction band affected by temperature?
The electrical properties of intrinsic semiconductors are not greatly affected by the
presence of impurities, at least not at room temperature. This is because the
number of electrons in the conduction band is determined principally by thermal
excitation of electrons from the valence band as a result of the narrow band gap.
The Fermi distribution function f(E) is given by

f(E) = l+exp((E-EF)/*BT)- (7A}

If we take the band gap £g to be typically 1 eV with the Fermi level in the middle
of the gap, and the ambient temperature to be 300 K, with £B = 1.38 x 10~23JK-1

and consequently k%T — 0.05 eV, we can make the approximation,

f(E) s exp ( - VfM } = exp f^L ), (7.2)
V kKT ) \2kKT)

where E - EF ^ Eg/2.
This gives us the probability of an electron being thermally stimulated from the

top of the valence band to the bottom of the conduction band. The values of this
probability are given in Table 7.2.

0
100
200
300
400

0
0.0086
0.0172
0.0258
0.0344

oo
58
29
19.3
14.5

0
0.06 x IO-24

0.25 x IO-'2

4.0 x IQ-9

0.5 x I0~6

gap at various temperatures.

Whereas f(E) gives the probability of any state being occupied, the number of
electrons at any given energy level, N(E) is the product of the density of avail-
able electron states D(E) and the probability of occupancy f(E)

N(E) = 2D(E)f(E), (7.3)

where the factor of two is introduced because electrons can have spin-up or spin-
down. This doubles the number of electrons that can occupy any energy level
without violating the Pauli exclusion principle. The density of states D(E) for free
electrons as shown earlier in Section 4.4.7 is given by

".<*>=¿(i?f̂ , ™
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which is the number of energy levels which exists below an energy E. If this
expression is differentiated it gives the number of energy states within unit energy
interval D(E)

^-™-¿£)'>.
while the density of electronic states is twice this number, and the density of
occupied states is given by,

N(E)=^(vTEl/2f(E)- (7-6)
At room temperature an intrinsic semiconductor has about 1015-1020 conduc-

tion electrons per m3 (depending on the size of the band gap) caused by thermal
stimulation alone. This contribution to the electrical conductivity is known as the
'dark current' simply because it arises in the absence of incident light.

7.2.2 Number density of electrons in the conduction band
The number of conduction electrons per unit volume can be calculated using the
equations in Section 7.2.1 for specific materials. At a room temperature of 300 K,
the probability of any given electron being excited across the band gap in silicon is
0.15 x 10~9 (Eg = 1.17eV) and in germanium is 0.5 x 10"6 (Eg = 0.75 eV). This
probability, when multiplied by the number of available electrons per unit volume
at the top of the valence band Nv, gives the number of conduction electrons per
unit volume Ne

Ne = Nvf(E) (7.7)

-N^(-^f}- (7'8)

In practice, the number of electrons per unit volume at the top of the valence band
is nearly equal to the number of electron states per unit volume at the bottom of
the conduction band.

In an intrinsic semiconductor such as silicon, the electrical charge will be carried
by both electrons in the conduction band and by holes in the valence band. The
number of holes per unit volume in the valence band is given by an equation
similar to eqn (7.8),

Nh=Ncexp(--fi-Y (7.9)
V 2£BT /

where Nc is the number density of holes available at the bottom of the conduction
band. In an intrinsic semiconductor NH should equal Ne. The product NCNV gives a
number which is the square of the intrinsic electron/hole pair density.

These last two equations are useful because the values of Nc and Nv do not vary
much with temperature compared, for example, with the exponential term.
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Therefore they are often assumed, to a first approximation, to be constant. Also,
interestingly, the values of Nc and Nv do not change by much among the
commonly encountered semiconductor materials, for which they have values of
typically 2.5 x 1025 m~3. However, it must be remembered that, for example, Nv

is a measure of the number of available electrons per unit volume at the top of the
valence band which is significantly less than the number density of all valence
electrons which is typically 1028-1029m~3.

For silicon at room temperature, therefore, Ne=N^ = 3.8 x 1015m~3, while
for germanium Ne = NH = 1.25 x 1019 m 3. Table 7.3 shows a comparison of the
electronic properties of an insulator such as diamond, two intrinsic semiconduc-
tors such as silicon and germanium, and a metal such as copper.

Table 7.3 Comparison of the band gap, conduction electron densities and con-
ductivities of carbon (diamond), silicon, germanium, and copper.

£g(eV)
Neat300K(m-3)
(j^-'m-1)

C
(diamond)

5.3
i x icr20

~I012

Si

1.17
4x I015

5 x ICT4

Ge

0.75
l .25x I019

2.2

Cu

0
8.5 x I028

5x I07

7.2.3 Conductivity of intrinsic semiconductors
Which factors determine the conductivity of intrinsic semiconductors?
In the intrinsic semiconductors electrons are stimulated across the energy gap
from the valence band to the conduction band. The higher the temperature, the
more electrons are found in the conduction band. Each electron that undergoes
such a transition leaves behind a hole in the valence band. Both electrons and
holes can contribute to the electrical conductivity of the material.

a=A

Temperature

Figure 7.7 Variation of the conductivity of an intrinsic semiconductor as a function of
temperature.
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The conductivity a is determined by the sum of contributions due to electrons
and holes:

a = eNefj,e + e?Nh//h, (7.10)

where e is the electronic charge, Ne is the number density of conduction electrons,
NH is the number density of conduction holes, ¿¿e is the mobility of electrons and
jL¿h is the mobility of holes. The mobility is the average drift velocity of charge
carriers per unit electric field strength:

/* = ? = - = -. (7.1D£ m 7

If we assume that N(E) = 2D(E)f(E) then using the above free electron expression
for D(£), it can be shown that the number density of electrons and holes is

Ne = 4.82 x 1021 (— Y/2T3/2exptíÚ (7.12)
\wo/ \2kvl )

= Nh. (7.13)

Typically Ne = NH — 1015 to 1019 carriers per m3 for an intrinsic semiconductor at
room temperature. The electrical conductivity of an intrinsic semiconductor with
band gap £g is

( * \3/2 / _p \

— T3/2^e-f/^h)exp —4 , (7.14)
mo ) \2REi J

and m* is the effective mass of the electrons and holes, which is assumed to be the
same for these purposes. In fact this is rarely the case. Equation (7.14) has the form

"=A™4&- (7-i5)

Reciprocal temperature (K~1)

Figure 7.8 Variation of log cr with I/T for an intrinsic semiconductor.
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If we take logarithms of both sides

EXTRINSIC (OR IMPURITY) SEMICONDUCTORS

which means that if intrinsic conductivity is the only mechanism taking place, we
would expect the conductivity a to vary with temperature T as shown in Fig. 7.8.

7.3 EXTRINSIC (OR IMPURITY) SEMICONDUCTORS
What is an extrinsic semiconductor?
An extrinsic semiconductor is a material with a band gap in which a certain
concentration of defect sites is deliberately introduced leading to additional
electron or hole states (or both) in the band gap. The electrons can be thermally
stimulated from the 'donor' levels in the band gap into the conduction band
leading to electron conduction, or alternatively electrons can be thermally
stimulated from the valence band into the 'acceptor' levels in the band gap leading
to hole conduction in the valence band.

The electrical properties of extrinsic semiconductors can be carefully controlled
by the addition of acceptor or donor atoms. This means that the materials can be
designed for specific technological applications, and therefore the extrinsic semi-
conductors remain the most important materials for electronics applications [6].

The donor levels reside at an energy AE<j below the conduction band and the
acceptor levels reside at an energy A£a above the valence band. Typically these
energy differences are about 1% of the energy gap

Donor
levels

Acceptor
levels

Empty
conduction
band

Band gap

Full
valence
band

Figure 7.9 Schematic band structure diagram of an impurity semiconductor, showing both acceptor
and donor sites in the band gap.
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7.3.1 Donor elements
How can the number of electrons available for conduction in the conduction band
be altered by the addition of impurities?
Typical donor elements in impurity semiconductors are phosphorus, arsenic, and
antimony. When added in small amounts (a few parts in 106) they contribute an
extra electron which populates the conduction band. The conduction mechanism
in this case is via electrons, and the material is called an 'n-type' semiconductor.

7.3.2 Acceptor elements
How can the number of holes available for conduction in the valence band be
altered by the addition of impurities?
Typical acceptor elements in impurity semiconductors are boron, aluminium,
gallium, and indium. These have one electron less than silicon or germanium.
They therefore take an electron from the valence band leaving a 'hole,' which
enables conduction to take place in the valence band through effective migration
of these 'holes.' Since the charge carrier in this case appears to be positive, such
semiconductors are known as 'p-type' semiconductors.

7.3.3 Number density and type of charge carriers
How can the number density and type of charge carriers be determined?
Unlike metals, semiconductors can have either positive or negative charge carriers.
The two standard measurements which are used to determine the number and type
of charge carriers are the electrical resistivity (or conductivity) and the Hall effect.
We will now consider how the number density of charge carriers is altered by tem-
perature and furthermore how the number density of charge carriers and details of
the electronic band structure of the semiconductor determine the conductivity.

7.3.4 Temperature dependence of electrical properties
How do the electrical properties of extrinsic semiconductors change with tem-
perature?
Since the populations of electrons in the conduction band, and of holes in the
valence band, increase with temperature, so the electrical conductivity of extrinsic

\
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(extrinsic)

0 100 200 300
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Figure 7.10 Variation of conductivity of an extrinsic semiconductor with temperature.
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semiconductors increases with temperature. The presence of impurities provides
acceptor and/or donor levels which increase the population levels of charge
carriers in the valence band and conduction band, respectively. Therefore, the
electrical conductivity increases with impurity content. There is also a contribu-
tion to the conductivity arising from absorption of photons, the so-called photo-
conductivity, providing the photon energy is large enough to excite electrons into
the conduction band from the valence band.

7.3.5 Conductivity of extrinsic semiconductors
What factors determine the conductivity of extrinsic semiconductors?
In extrinsic semiconductors we usually have a predominance of donor impurities,
leading to an n-type semiconductor or a predominance of acceptor impurities, lead-
ing to a p-type semiconductor. Therefore, in n-type semiconductors,

a = NcAM?, (7.18)

and in p-type semiconductors,

a = N^e. (7.19)

Typically the number density of charge carriers in an extrinsic semiconductor is
N = 1021 m~3 at room temperature.

The extrinsic or impurity contribution is for most of these semiconductors the
only significant component at room temperature. At higher temperatures thermal
stimulation of electrons directly across the band gap may also occur. So there are
two contributions to the conductivity: intrinsic and extrinsic conduction whose
relative contributions to the total conductivity are dependent on temperature.

If we plot loge a against 1/T as we did above for the intrinsic semiconductor,
then for the extrinsic semiconductor we obtain the following type of plot, shown
in Fig. 7.11

We see from this that the extrinsic contribution is more important at low tem-
peratures (high 1/T) and the intrinsic contribution is more important at high
temperatures (low 1/T).

Conductivity

Reciprocal temperature

Figure 7.11 Variation of loger with 1/7 for an extrinsic semiconductor.
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7.3.6 Minority and majority charge carriers
How does the presence of both types of charge carrier affect the electrical properties
of a semiconductor?
In discussion of extrinsic semiconductors we have so far only considered situations
in which the charge carriers are either exclusively electrons (n-type semiconduc-
tors with donors in the band gap) or exclusively holes (p-type semiconductors with
acceptors in the band gap). In practice real semiconductor materials will have
combinations of both acceptors and donors.

In a material containing predominantly donors (which is known as n-type)
the number density of electrons in the conduction band will be high, but there
will always be a small, but significant number density of holes in the valence band.
A similar situation occurs in p-type semiconductors. The electrons in an n-type
material and the holes in a p-type material are known as the majority carriers,
while the holes in an n-type and the electrons in a p-type material are known as
minority carriers.

In either case the product of the concentration of electrons and holes is a
constant for a given material and at a given temperature as shown by the equation

NeNh = N?, (7.20)

where N¡ is the intrinsic electron/hole pair density. The charge carrier densities are
therefore mutually dependent. Any defect sites that cause Ne to increase must
necessarily cause NH to decrease and vice versa. It follows that a fractional increase
in the number density of one type of charge carrier results in a reduction of the
number density of the other type of charge carrier in the same ratio. The minority
carriers are therefore important in the operation of semiconductor electronic
devices because they affect the majority charge carrier concentration.

It is possible to define a difference in number density between the two types of
charge carriers by the equation

N r =N e -N h , (7.21)

where Ne and NH depend directly on the number density of defect sites, donors
and acceptors, respectively. In the case of an n-type semiconductor the majority
and minority charge carrier densities are therefore,

*-s[i/(^IB
^[/FIH-

From the above two equations it is easy to obtain explicit expressions for both Ne

and Nh in terms of Nr and N\. When Nr < N¡ the behaviour of the material is like
an intrinsic semiconductor (Ne«Nh~N¡) and when Nr>N¡ the behaviour is
strongly extrinsic, so that for an n-type semiconductor (Ne«Nr, Nh«0).
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7.3.7 Number density of charge carriers: compensation
If both donor and acceptor states are present together in a semiconductor do they
compensate for the effects of each other?
We have seen in Section 7.2.2 how the number densities of electrons in the con-
duction band, and holes in the valence band can be calculated for intrinsic semi-
conductors. The presence of impurities in extrinsic semiconductors creates donor
or acceptor states which strongly affect the number density of charge carriers.

As the number density of electrons in the conduction band is increased by the
addition of donors so the density of holes in the valence band is decreased because
each hole has a greater probability of encountering an electron with which it can
recombine. The presence of acceptors decreases the number of electrons in the
conduction band for the same reason. This effect is known as 'compensation,' so
that a given number density of acceptors negates the effect of the same number
density of donors and vice versa.

The result of this is that the product NeNh of the number densities of conduc-
tion electrons and conduction holes is independent of the amount of doping or the
type of doping, whether n-type or p-type. This leads to the following useful result
for extrinsic semiconductors

NeNh = NCNV exp (- ¿ ) • (7-24)

As discussed in Section 7.2.2, the number density of states at the bottom of the
conduction band Nc and the number density of states at the top of the valence
band Nv are, to a first approximation, independent of temperature and have the
same value of typically 2.5 x 1025 m~3 for the commonly encountered semicon-
ductors. Therefore, with NCNV ~ 6.25 x 1050 m~3 the values of the product NeNh

can readily be estimated for a number of semiconductors simply from a knowledge
of the band gap Eg and the temperature. For example, based on the data in Section
7.2.2, NeNh ~ 1.5 x 1031 m~6 for silicon and ~1.6 x 1038 m~6 for germanium at
room temperature, independent of the level of doping.

7.3.8 Charge carrier lifetimes
How long do charge carriers, whether electrons or holes, remain in their excited
states?
In a semiconductor when a charge carrier, whether an electron or a hole, is excited
into a higher energy state it has a finite life expectancy in that excited state before
it recombines in an electron/hole pair. This is known as the charge carrier lifetime.
The equilibrium number density of charge carriers will be proportional to the
product of the generation rate g and the lifetime r. For electrons for example,

Ne=£T, (7.25)

and comparing with eqn (7.8) it follows that,

gT = Nvexp(-^|^. (7.26)
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If additional charge carriers are injected into a device, for example by current
injection, then there will be a number of charge carriers Nex = Ntot - Ne, or Nex =
Ntot — Nh, in excess of the equilibrium charge carrier density Ne or NH- The number
of excess charge carriers will again depend on the charge carrier lifetime r and the
effective recombination rate for charge carriers (r — g) according to the equation

r(r-g)=Nm (7.27)

where r is the rate of recombination of charge carriers in electron/hole pairs and g
is the rate of generation of charge carriers. The larger the lifetime r the greater is
the difference between the actual charge carrier concentration and the equilibrium
charge carrier concentration.

Additionally, the longer the lifetime of charge carriers before they recombine,
the larger is the distance that they can move as a result of diffusion. The diffusion
length Lj is determined by the diffusion coefficient D and the charge carrier
lifetime r according to the following equation,

Ld - \/D7, (7.28)

which applies to both electrons and holes. The diffusion length and the charge
carrier lifetime affect the operational efficiency of devices such as pn junctions and
transistors.

7.4 OPTICAL PROPERTIES OF SEMICONDUCTORS
How are the optical properties of semiconductors determined by the electron
band structure?
Due to the band gap energy £g, semiconductors are unable to absorb and reflect
lower frequencies. Absorption and reflection start to occur at a frequency UJQ given
by h(juQ = Eg and at this frequency we notice the so-called absorption edge.
At higher frequencies absorption and reflection can be relatively high. The absorp-
tion edge of a semiconductor is shown in Fig. 7.12.

Optical
absorption

co0 Frequency co

Figure 7.12. Idealized variation of optical reflectance or absorption in a semiconductor with
frequency of incident light.
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7.5 PHOTOCONDUCTIVITY
What happens when electrons are excited across the band gap by absorption of
photons?
In addition to thermal stimulation of electrons into the conduction band, there are
other methods of achieving the same result. Illumination of a semiconductor with
light of sufficient frequency (i.e. photon energy) also leads to increased numbers of
charge carriers in the conduction band and hence to increased conductivity. This
arises from the excitation of electrons from the valence band to the conduction
band by photons. The dependence of conductivity on the absorption of light is
known as photoconductivity.

The frequency of light necessary to increase the conductivity of an intrinsic
semiconductor is determined by the band gap energy Eg. In an extrinsic semi-
conductor it is determined by the energy displacement of the donor or acceptor
sites from the conduction or valence bands, respectively.

The variation of conductivity with frequency of incident radiation is shown in
Fig. 7.13.

Conductivity
G

Dark <
current <

Figure 7.13 Idealized variation of electrical conductivity in a semiconductor with frequency of
incident light at constant intensity and at different temperatures.

For an intrinsic semiconductor with band gap 0.7 eV, the frequency CJQ
necessary to stimulate electrons across the band gap £g is

feu;o = Eg (7.29)

u>o = 1-06 x lO^s'1, (7.30)

which corresponds to a wavelength of 1770nm which is well into the infrared
region of the electromagnetic spectrum. Therefore optical wavelengths carry suffi-
cient energy to stimulate electrons across the gap in these intrinsic semiconductors.
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The dependence of photocurrent on the intensity of incident light above the
threshold frequency u;0, means that the change in electrical conductivity of a
semiconductor with incident photon flux can be used as a method of detecting
infrared radiation.

The component of conduction due solely to the thermodynamic temperature is
known as the 'dark current', since this is the current which would be obtained if
the semiconductor was shielded from all incoming radiation (i.e. was literally kept
in the dark). The variation of conductivity with frequency of light at different
temperatures is also shown in Fig. 7.13. It is known that if the charge carriers are
prevented from recombining immediately the photoconductivity will persist even
after the incident light has been removed [7].

Extrinsic semiconductors can be used for infrared detection providing the
frequency u; of incident infrared radiation satisfies the condition,

feu;>AE, (7.31)

where AE is the energy difference between the donor sites and the conduction
band, for example. The threshold frequency is UJQ « 1013 s"1. This involves
photoconductivity by stimulation of electrons from donor levels or to acceptor
levels. In the case of infrared detection the semiconductor is usually cooled to 4.2 K
to return thermally excited carriers to their donor or acceptor sites and so reduce
the dark current, thereby improving the signal-to-noise ratio of the photocurrent.

7.6 THE HALL EFFECT
How do the electrons and holes in a semiconductor behave under the combined
action of an electric field and a magnetic field?
Conductivity measurements alone are not sufficient to find the total number of
charge carriers, their signs and their mobilities. Measurement of the Hall effect
gives the necessary additional information.

When a current flows in a conductor or semiconductor and a magnetic field is
applied perpendicular to the current, then a voltage is generated across the material
in a direction perpendicular to planes containing the current and the magnetic
field, as shown in Fig. 7.14. This voltage is known as the Hall voltage and the
phenomenon is known as the Hall effect.

Figure 7.14 Hall emf resulting from the action of an external magnetic field on charge in motion.
H is the magnetic field, / the conventional current, EHaii is the Hall field, and v is
velocity of electrons.
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The explanation of this phenomenon is quite simple. It arises as a result of the
Lorentz force on a moving charge in a magnetic field. If a charge e is moving with
velocity v in a magnetic field H, then the Lorentz force FL is given by,

FL - fjLQev x H. (7.32)

If we wish to express this as an equivalent electric field ^Hall?then remembering
that FL = ¿ÍHaih we nave simply

ÍHaii = W x H. (7.33)

We also know that the current density / is given by the product of N the num-
ber density of charge carriers, e the electronic charge and v the velocity of the
charge carriers

J = Nev. (7.34)

Hall field
EH

Direction of deflection of holes f
during transient period

Magnetic field
'H

a) Holes as charge earners
Velocity of holes
under electric field

Direction of deflection of
electrons during transient period Magnetic field

H

Velocity of electrons
under electric field

EH
Hail field

b) Electrons as charge carriers

Figure 7. /5 Direction of Hall field for charge carriers of different sign. In both cases the direction of
the magnetic field H is into the plane of the paper, and in both cases the conventional
current is from left to right.
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Substituting this into the equation for the Hall emf leaves,

£Hall=Mo^. (735)

The Hall coefficient RH is defined such that,R«=an (7-3e>
= ¿- I"?)

This means that we can make measurements of £Hall>7 and H and fr°m these
determine the product Ne. Note that the sign of the Hall coefficient depends on
the sign of the charge carriers. Typical values of the Hall coefficient are
RH^10-9m3C.

We note that if the Hall field £Hall is in a certain direction for a flow of nega-
tive charge carriers, then it will be in the opposite direction for the same current
when it is produced by a flow of positive charges in the reverse direction, as shown
in Fig. 7.15.

The Hall coefficient is inversely proportional to the number density of charge
carriers N. Hall measurements are easy to make on semiconductors because
N is relatively low, being typically 1015 to 1021 m~3. In metals, N is large being
typically 1028m~3 and the measurement of RH is consequently more difficult.
Typical values are given in Table 7.4. The Hall effect can also exhibit quantum
effects as shown by, among others, Von Klitzing et al. [8].

Table 7.4 Hall coefficients for various materials. Material R fm3C~')

Li -1.7 x Ifr10

In +l.59x 10-'°
Sb -I.98X ICT9

Bi -5.9 x I O'7

7.7 EFFECTIVE MASS AND MOBILITY OF CHARGE CARRIERS
If the relationship between energy and k vector in a semiconductor is no longer
quadratic, how can this be expressed in terms of mobility or effective mass of the
charge carriers?
We have stated in Section 5.4.5 that an effective mass can be defined for electrons
in a particular location in the band structure, in accordance with the relation,

m*=—^- , (7.38)
(d2E/dk2)

which means that energy bands with high curvature lead to low effective mass, and
flat energy bands lead to high effective mass. For an electron near the top of a
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band d E/dk2 is negative. This means that such an electron decelerates in the
presence of a field as it exchanges momentum with the lattice.

The idea of a negative effective mass of an electron is conceptually difficult.
In fact we find that the charge carriers near the top of a band are not electrons but
'holes' with a positive charge and a positive mass. The net acceleration produced is
the same as that on a negative charge with a negative mass. The 'hole' moves in the
opposite direction from the electronic current.

The conduction mechanism in semiconductors is therefore more complicated
than in metals. Two types of charge carrier are possible, and in addition the
number of charge carriers is temperature dependent.

We have defined the mobility in Section 7.2.3 as the velocity per unit field
strength, // = v/C. Remember that inside the semiconductor the electrons or holes
cannot accelerate indefinitely under the action of a field (as they would in free
space) because of their interaction with the rest of the solid. The mobility is
proportional to the inverse of the scattering probability, and we know that scat-
tering of electrons is caused by phonons and impurity atoms. In metals, the
scattering probability remains almost constant as a function of temperature, but
in semiconductors this is not true because the energy distribution of the carriers in
a semiconductor varies with temperature.

7.8 SEMICONDUCTOR JUNCTIONS

Are there any interesting electronic effects at the boundary between two different
semiconducting materials?
So far we have talked at length about the conductivity mechanisms in intrinsic and
extrinsic semiconductors. We have not yet looked at the electronic properties of
junctions between semiconductors, and yet from the applications viewpoint
semiconductor junctions are of crucial importance in devices.

Suppose a piece of p-type semiconductor is in direct contact with a piece
of n-type semiconductor. This junction has some very interesting properties
which have had a direct bearing on the development of semiconductor technol-
ogy. In order to understand these properties, however, we need to consider two
principles:

(i) When two solids are in contact, charge transfer occurs until their Fermi
energies are the same.

(ii) In n- and p-type semiconductors, the Fermi level lies approximately at the
donor and acceptor levels, respectively.

When the n-type and p-type semiconductors are placed in contact, an unstable
situation arises temporarily because of the step change in electron and hole
densities across the interface. Equalization of the Fermi levels occurs as electrons
diffuse from the n-type material into the p-type material. This charges the p-type
material negatively and sets up an electric field which opposes further diffusion of
electrons. A dynamic equilibrium arises when the Fermi levels on either side are
equal. However as a result of the net electrical charge on each side of the junction
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n-type p-type
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Figure 7.16 Electron band structure diagram for a pn junction: (a) energy levels of p-type and
n-type semiconductor before contact, (b) transient condition immediately after con-
tact, (c) steady-state condition after contact.

the conduction and valence bands of the two sides of the ¡unction are displaced
relative to each other, as shown in Fig. 7.16.

7.8.1 Depletion layer
How is the region in the vicinity of a semiconductor junction different from the
bulk of the material?
As the electrons diffuse from the n-type to the p-type material, the number of
charge carriers in the n-type material decreases, at least in the volume close to the

150



SEMICONDUCTOR JUNCTIONS

junction. A similar effect occurs as the holes diffuse from the p-type to the n-type
material. This means that in the vicinity of the interface there is a 'depletion layer'
on each side of the interface containing fixed but opposite charges and a reduced
number of charge carriers. This depletion layer is sometimes called the space
charge region.

p-type n-type

nh

Depletion
Region

distance from
interface

Figure 7.17 Electron and hole densities on either side of a pn junction.

Now, if we consider this junction, it is found to have some useful properties.
For example, electrons in the conduction band of the n-type material which may
be trying to diffuse into the p-type material encounter a potential barrier at the
junction. This makes it difficult for electrons to pass from the n-type to the p-type
material, but relatively easy for them to pass in the opposite direction. This is
represented in the figure by the energy gradient for electrons passing from n-type
to p-type.

On the other hand, there are only a few electrons in the conduction band of the
p-type material whereas there are many in the conduction band of the n-type
material. Under equilibrium conditions, the diffusion rate of electrons in each
direction is equal. Similar arguments apply to the holes in the valence band,
whereby the p-type material has many holes in the valence band but the n-type
material has only a few holes in its valence band.

7.8.2 Forward biasing the pn junction
What happens if a voltage is applied across the junction to reduce the potential
difference across the junction?
If we place an electric voltage across the junction, for example by connecting the
positive terminal of a dc power supply to the p-type material and the negative
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terminal to the n-type, the voltage difference, and hence the energy difference,
between the two conduction bands is lowered. This is called positive or forward
biasing. The height of the potential barrier across the conduction band is reduced
from Eg to AE = Eg - eV where V is the applied voltage, as shown in Fig. 7.18.
As a result of this shift, more of the n-type conduction band is exposed to the
p-type material and electrons cross more easily from the n-type material into
the p-type material. These can then recombine with holes emitting light. The
forward-biased pn junction can therefore be used as a light source known as a light
emitting diode (LED), or under certain special conditions as a semiconductor laser.

electron
flow—*•

•ve +ve
depletion

layer

Forward bias

n-type p-type
electron
flow

depletion
layer

Reverse bias

Figure 7.18 Electron band structure of reverse-biased and forward-biased pn junctions.
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7.8.3 Reverse biasing the pn junction
What happens if a voltage is applied to increase the potential difference across
the junction?
If the negative terminal of the dc power supply is connected to the p-type material,
the energy separation of the bands on either side of the junction is increased. This
process is called negative or reverse biasing. In this case, because the height of the
barrier is increased by AE = Eg + eV, as shown in Fig. 7.18, it becomes very
difficult to drive electrons from the n-type into the p-type material. However,
electrons can move easily from the p-type to the n-type material down the poten-
tial gradient of the conduction band in the vicinity of the interface. An electrical
current pulse occurs for example if electrons are stimulated across the band gap by
the absorption of photons in the junction itself. This means that the reverse-biased
pn junction can be used as a light detector (photodetector or photocell).

The current in a pn junction diode therefore behaves nonlinearly with the bias
voltage as shown in Fig. 7.19. We see that the simple pn junction which we have
described can also act as a rectifier or diode by allowing current to flow in one
direction only.

Current (mA) *

1.5-

1.0-

0.5

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
Voltage (V)

Figure 7.19 Voltage-current characteristic of a pn junction, showing conduction in the forward
direction but no conduction in the reverse direction (until electrical breakdown occurs
at much higher reverse voltages).

7.8.4 Semiconductor devices

How can we explain the movement of charge carriers in a pn junction?
We have looked at the simplest case of a semiconductor device, the pn junction,
and shown that this can be used as a diode. We need to look at the operation of
the pn junction in more detail so that the current-voltage characteristics shown in
Fig. 7.19 can be understood in terms of the electronic properties. Consider first
the band structure diagram of the pn junction shown in Fig. 7.16c.

Electrons in the conduction band of the n-type material cannot easily reach the
p-type material because of the potential energy ramp which causes an internal
electric field £. However, the higher density of electrons in the conduction band of
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the n-type material will cause a diffusion of electrons from this region of high
concentration to the region of low concentration in the conduction band of the
p-type material.

In diffusion, the total number of electrons passing through cross-sectional area
A in unit time, dN/di, is dependent on the rate of change of the number density of
electrons with position, dN/dx, according to the equation,

£--<•
Here, D is the diffusion coefficient in units of m2s 1 which in this case is given by

D=^f, (7.40)

where ^ is the mobility of the electrons (see Section 7.2.3), &B is Boltzmann's
constant, e is the charge on the electron and T is the temperature in Kelvin.
Substituting for D in the diffusion equation,

(ï)-=^(£>
We can therefore define a diffusion current density J¿ for the charge carriers in

terms of the rate of change of the number density N with time,

*-*(£)
= -MBT(^). (7.43)

Under equilibrium conditions this diffusion current density must be balanced by
a conventional current density/v due to the voltage gradient at the pn junction:

;V = (7£ = N^, (7.44)

and equating the current densities, ]¿ =JV

Nent=-»kKT^. (7.45)

Rearranging and integrating gives

Mf*-^!*- (7-46)
and noting that when V = 0, N = N(0), and when V = V, N = N(V), this gives

-^Mü)
This relates the number density of electrons N(V) at the top of the potential

ramp of height V (in the p-type material) to the number density of electrons N(0)
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at the bottom of the potential ramp (in the n-type material). Equation (7.43)
shows how the equilibrium number density of electrons depends on the voltage.

If we look at the problem in more detail there is a hole current in addition to the
electron current in a semiconductor. We denote the electron current density from
the n-type region to the p-type region (diffusion current) as /ae, the electron
current density from the p-type region to the n-type region (field current) as /ve.
Similarly the hole current densities can be denoted /¿h (diffusion) and/vh (field).

7.8.5 Dependence of current on voltage across a pn junction
How can we explain the current-voltage characteristics of a pn junction?
When a bias voltage Vapp is applied to the pn junction it causes currents to flow
across the junction. A positive voltage by convention reduces the potential barrier
for both electrons and holes, while a negative voltage by convention increases the
barrier. As the voltage is increased the net electron current density flowing from
the n-type region increases. Likewise the net hole current density flowing from the
p-type region increases. The current density for the diffusion of electrons can be
determined from,

'-ra
-ssH->(*?)) <7-4"
-i^-fê?).

A , . e dN(V)
and replacing — —-— by /vc we arrive atÀ dit

/de=/veexp(^), (7.51)

and similarly for the hole current

;dh=/vhexpf^%). (7.52)\kRT )

The net electron current density is/e =/de -/ve and the net hole current density
is/h =/dh —/vh- The total current flowing is then,

/tot = /e + /h (7.53)

= (/vh+/vc){exp^-lj (7.54)

=4xp(SO-1}- (7-55)
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This is the diode equation, where/s is the sum of the current densities carried by
the minority carriers across the junction. We can now express the current flowing
through a pn junction in terms of the voltage across it. When Vapp = 0 there is no
current. When Vapp > 0 the current increases exponentially with applied voltage.
When Vapp < 0 the current is small and negative. This equation describes the
current-voltage characteristics shown in Fig. 7.19.

7.8.6 Temperature dependence of the current-voltage characteristics of
a pn junction

How does the pn junction behave if the temperature changes?
The full temperature dependence of /tot is not shown explicitly in the above
equation because /s itself is temperature dependent. /s is known as the 'reverse
saturation current density'. The reason for this is that when a very large reverse bias
(negative voltage) is applied to the junction, the current density/tot approaches/s.
Specifically,

lim /tot = -/s, (7.56)
Vapp^-OO

as can be seen from Fig. 7.19 and eqn (7.47). As a further example, when
Vapp < -3k%T/e the current density/tot is 95% of/s.

This reverse saturation current density is determined by the band gap energy £g

and the temperature T. In general, there is a contribution to/s from both electrons
and holes, so that

;s=,De^ + ,Dh^. (7.57)

This is known as Shockley's equation. De and DH are the diffusion coefficients
for electrons and holes, respectively, Ne is the number density of electrons in the
conduction band of the p-type material, and NH is the number density of holes
in the valence band of the n-type material. From the symmetry of the situation, the
number densities of these 'minority carriers' on either side of the junction can
reasonably be expected to be equal, and since the movement of holes is simply
the movement of electrons in the opposite direction, it is also reasonable to expect
the diffusion coefficients to be equal. Therefore,

/s=2*De^. (7.58)

In this equation the temperature dependence of/s is determined principally by
the temperature dependence of dN€/dx. If the distance within the junction over
which the voltages of the two bands change is i then a linear approximation gives
dNJdx = Ne/L An expression for Ne can be obtained from eqn (7.24) so that

*-^-(-e=).
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and since /oo is not dependent on temperature, the other terms in the equation deter-
mine the temperature dependence of the current density through the pn junction.

7.8.7 Gallium arsenide and related compounds
What is the reason for the great interest in gallium arsenide and related compounds?
Although the present day semiconductor industry is based largely on silicon, there
has been widespread interest in gallium arsenide and related compounds based on
elements from group III and V of the periodic table. This has been a long-standing
interest. Gallium arsenide is of great technical interest for three reasons. It has

(i) a high electron mobility ¿¿e,
(ii) a large band gap £g,
(iii) a direct band gap.

The large electron mobility results from the small effective mass m* of the
electrons in this material. This is caused by the relatively large upward curvature
of the conduction band near to the F point in the Brillouin zone. As a result,
devices can be fabricated from this material which can operate over a very short
time period. The material therefore finds applications where the speed of
operation of electronic systems is of paramount importance.

The band gap of 1.5 eV makes gallium arsenide sensitive to wavelengths of light
of 827 nm and shorter. This means that electrons dropping from the bottom of the
conduction band to the top of the valence band will emit a photon in the red end
of the visible spectrum. It can therefore be used in light emitting diodes (LED),
which emit red light. By combining it with other materials such as gallium
phosphide, other colours can be produced by engineering the size of the band gap.
A wide range of optoelectronic semiconductors based on III-V compounds have
been produced.
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which gives an expression for the temperature dependence of the reverse
saturation current density as

. 2eDe NCNV Í Eg\¿=—-Nrexp(-rfO' (7-60)

and as shown by Sze [9] the terms in front of the exponential are also weakly
temperature dependent; however, the exponential term dominates the tempera-
ture dependence of/s.

As the temperature increases, the value of the exponential term approaches
unity, giving a high-temperature limit for/s

2eDeNcNvhm Js = —— —— =J00. (7.61)
T^oo t A/h

The expression for the total current density can, therefore, be written as

^-/-«*(-&) Ríe?)-1)- <«»
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The optical properties of GaAs, specifically its high efficiency in detection and
generation of light, derive from its direct band gap. This means that it can be
used in fabricating lasers [10] and in optical communication devices for com-
puters. In this application information is transmitted by photons instead of by
electrons. These optical computers are much faster than conventional computers.
Recent developments in optical computing have again brought this technology to
the forefront.

7.8.8 Summary of gallium arsenide properties
What are the advantages of gallium arsenide over silicon and germanium for
fabrication of devices?
These include:

(i) GaAs circuits are faster and operate at equal, or lower, power than silicon
circuits.

(ii) The separation between the conduction and valence bands is more easily
controlled in GaAs and related compounds than in silicon.

(iii) GaAs can radiate and detect near infrared and visible red radiation depending
on its band gap.

(iv) GaAs can support optoelectronic functions while silicon cannot.
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EXERCISES
Exercise 7.1 Approximation to the Fermi function in semiconductors
If the band gap in a semiconductor is Eg = 0.5 eV and the temperature is 300 K,
show that the Fermi function for electrons at the bottom of the conduction band
can be approximated by

AEg) = exp(-Eg/2£BT),

and that, in general, the probability of an electron being found in the conduction
band at an energy AE above the Fermi level is

/•(AE) = exp(-AE/*BT).

Exercise 7.2 Temperature dependence of conductivity in intrinsic semiconductors
A sample of Ge exhibits intrinsic conductivity at 300 K. If the absorption edge is at
1771 nm, estimate the temperature rise that will result in a 30% increase in
conductivity.

Exercise 7.3 Electronic properties of gallium arsenide, silicon and germanium
Compare the known electronic properties (e.g. band gap, electron mobility,
conductivity, optical properties, etc.) of silicon, germanium and gallium arsenide.
Indicate engineering applications where GaAs has a distinct advantage over the
others. If the E-k relationship for the bottom of the conduction band of a
specimen of GaAs is of the form E =Ak2, where A = 7.5 x 10~38Jm2 find the
effective mass of the conduction electrons in kilograms, and as a ratio of the free
electron rest mass.

Exercise 7.4 Electron band gap and conductivity at finite temperature
Calculate the intrinsic conductivity at 300 K of the compound semiconductor
gallium antimonide, GaSb, for which the band gap is 0.7 eV, assuming the num-
ber density of electron states close to the top of the valence band is 2.5 x 1025 m~3

and the electron and hole mobilities are 2.3m2V~1s~1 and 0.01 m2V ̂ s"1

respectively.
If donor impurities add one conduction electron per atom of impurity how

much n-type impurity is required to give GaSb a conductivity of 100 S m"1 ? Would
the same quantity of p-type impurity (instead of n-type impurity) suffice to
increase the conductivity to this value?

Exercise 7.5. Impurity levels and resistivity of semiconductors
A semiconductor is doped with 1.0 x 1022 donors and 5.0 x 1021 acceptors per
cubic metre. The donor and acceptor levels are 0.01 eV from their respective band
edges. If the carrier mobility is 0.2m2V~1s~1 , calculate the resistivity at a
temperature of 20 K. (Hint: look up the effect of 'compensation'.)

Exercise 7.6. Effect of temperature on pn junction
What effect has an increase in temperature on the current-voltage characteristics
of the pn junction diode shown in the figure below? Discuss these effects both in
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Current (mA) -

1.0-

-0.3

Voltage (V)

Figure 7.20 Current-voltage characteristics for a pn junction, /; = — 1.0 x I0~6 A at -0.3V.

the forward-bias and the reverse-bias regions. Assuming a band gap of 0.7 eV
calculate the current through the diode under a reverse bias of 0.3V at a
temperature of 60°C, given that Fig. 7.20 is correct at 20°C with a current of
-1.0 ¿¿A at a reverse bias voltage of -0.3 V.
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8 ELECTRICAL AND THERMAL
PROPERTIES OF MATERIALS

OBJECTIVE

In previous chapters, we have built up an understanding of the electronic
properties of materials on the microscopic scale. These theories have involved
first considering the electrons as classical particles of a free electron gas and
later as free electron waves contained within the material. We then found that
the electrons occupy allowed energy bands and we were able to distinguish
between on the one hand metals and on the other semiconductors and
insulators on the basis of their electron band structures. We also found that
these electron bands were anisotropic and so plots of allowed energy against
position in ¿-space were necessary. Now we must bring all of these ideas
together to account for the macroscopic electrical and thermal properties of
materials. In this chapter, therefore, we look at the relationship between
macroscopic measurable electrical properties and the underlying electronic
properties such as mobility, effective mass and number density of electrons.
Then we look at various thermoelectric effects which span the interface
between electrical and thermal effects. Finally, we discuss the phenomenon of
thermoluminescence which bridges the gap between thermal and optical
properties of materials, and therefore provides a link to the next chapter on
optical properties.

8.1 MACROSCOPIC ELECTRICAL PROPERTIES
How can the macroscopic properties of materials be described on the basis of the
preceding microscopic theories?
Our objective here is to describe the macroscopic electrical properties of materials
and then explain these through models of the microscopic mechanisms inside
the material. The familiar macroscopic properties are the conductivity and the
Hall effect.

8.1.1 Ohm's law and conductivity
Can the relation between current and voltage be explained on the basis of the
classical free electron theory?
Although Ohm's law is often written in the elementary form V = IR where / is the
electrical current flowing in a resistance R under an applied voltage V, the law can
also be written in the equivalent form,

/ = *& (8.1)
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where / is the current density, a is the conductivity and £ is the electric field.
As shown in Section 3.2.1 the current density/ can be written in terms of the
number density of electrons N, their charge e and their average drift velocity v:

J = Nev, (8.2)

and the drift velocity v can be expressed in terms of the mobility ¿¿ which is
defined as the drift velocity per unit field. (We have already encountered this
mobility briefly in Example 3.3.)

v = tf. (8.3)

Combining these equations gives the conductivity as

a = Nep, (8.4)

and so,

J = Netf. (8.5)

In metals, the charge carriers are electrons and so we are concerned in this case
only with the number density, charge and mobility of electrons. In semiconduc-
tors, both electrons and holes contribute to the conduction, as discussed in Section
7.2.2, so that using a similar equation for the current density in terms of both
contributions from holes and electrons leads to

/ = (NeMe+NhMhK. (8.6)

In order for Ohm's law to hold, we see that neither n nor t¿ can be a function of
electric field £. In fact, under certain conditions both n and JJL can become
functions of £ and Ohm's law is no longer valid. We may, however, regard the
above equation as a more generalized form of Ohm's law in which this
dependence can be taken into account.

8.1.2 Temperature dependence of conductivity in metals
Can the temperature dependence of conductivity in metals be described by the
classical free electron theory?
If we assume one type of charge carrier for simplicity, then the temperature
dependence of the conductivity is dependent on the temperature dependence of N
and //, because e is clearly constant according to our present understanding. In a
metal N is the density of valence (= conduction) electrons. This has a value of
typically N = 1028 m~3 in a metal, and is largely temperature independent. There-
fore the temperature dependence of conductivity should be due to a temperature
dependence of mobility.

The mobility of electrons in metals is of the order of n — 10~3 to 10"1

m2 V"1 s"1, and so this leads to a conductivity a of typically 106 to 108 (fím)"1.
All of the observed temperature dependence of a in metals arises from the
temperature dependence of the electron mobility IJL which is affected by phonon
scattering and impurity scattering of electrons in the metal. The classical free
electron theory does not give any inherent indication of how ¡JL should vary with
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temperature. Therefore the temperature dependence of electrical conductivity can
only be described by an ad hoc variation of mobility with temperature in the
classical free electron model.

Resistivity
P A

Residual _
resistivity

(Po)

P,~T

p. (Scattering by
phonons)

P0 (Scattering by
impurities)

Temperature T

Figure 8.1 Resistivity as a function of temperature in metals. This consists of two components; one
due to impurity scattering PQ which persists even at zero temperature, and one due to
phonon scattering p\. The relation p = PQ + p\ is known as Matthieson's rule.

8.1.3 Temperature dependence of conductivity in semiconductors
Can the temperature dependence of conductivity in semiconductors be described by
the classical electron theory?
In intrinsic semiconductors, the number density of charge carriers increases with
temperature according to the equation

N = N0exp(^j), (8.7)

where Eg is the band gap. The above equation assumes that the Fermi level is in the
middle of the band gap. This equation shows that there is an increase in the number
density of conduction electrons with temperature. In addition, there is a change in
mobility of the charge carriers with temperature, but this is less significant than the
change in charge carrier density. Therefore in semiconductors the temperature
variation of N dominates the temperature dependence of conductivity.

8.1.4 Temperature dependence of mobility
How can the temperature dependence of mobility of electrons be explained?
If we return to the classical description of electrons moving in a material, their
motion is continually disrupted by scattering. If the mean free time between
collisions is T, the charge e and the mass m, then the mobility /x is given by

er e
" = - = -, (8-8)
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and it can be seen that it is the temperature dependence of r which determines the
mobility, or alternatively we can view this as the temperature dependence of
the resistive coefficient 7 in the equation of motion of the electrons. Therefore, in
a metal 7 increases with temperature leading to a reduction in mobility //, and so a
decrease in conductivity <r.

The classical model gives no indication of the temperature dependence of 7,
although it is reasonable to suppose that, as the temperature is raised, the
increased vibrations of the lattice will cause more collisions with the free electrons
and contribute to a higher resistive coefficient 7 or shorter mean free time r.

8.1.5 Different types of mobility
How can we define electron mobility in a material*
There are four different kinds of mobility of electrons in a material that must be
distinguished.

(i) Microscopic mobility

Mmic=^ . (8.9)

This is defined for a particular electron moving with velocity v in an electric
field £. It therefore cannot easily be experimentally verified, and so remains
only a concept from which a more practical description of collective mobility
of electrons can be developed.

(ii) Conductivity mobility

£T
Mcon=^. (8.10)

This is the macroscopic or average mobility which is determined from
measurement of electrical conductivity o

(T = NefjLcon9 (8.11)

assuming N and e are both known.
(iii) Hall mobility

^ ^Hall /£ 19x
/XH = tf#H = —TTJ (8.12)

Moytt

is the mobility of charge carriers as determined from a Hall effect mea-
surement.

(iv) Drift mobility

Md=|. (8-13)

This is determined from measurement of the time t required for carriers to
travel a distance d in the material under the action of an electric field £.
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8.2 QUANTUM-MECHANICAL DESCRIPTION OF CONDUCTION
ELECTRON BEHAVIOUR

Do all 'conduction' electrons actually contribute to the electrical conductivity?
As we have shown in Chapter 5 electrons in a material behave not like classical
particles but like waves [1]. This leads to properties which can be different from
classical expectations. In the absence of an electric field, the valence electrons in a
metal have no net or preferential velocity in any direction. If we plot the vectors of
these electrons in velocity space, then for a free electron metal we obtain a velocity
sphere, the surface of which corresponds to the Fermi velocity. All points inside
the Fermi sphere are occupied. Integrating over the entire sphere we obtain zero
drift velocity.

When an electric field is applied, the Fermi sphere is displaced as shown in
Fig. 8.2. Still the majority of electron velocities cancel, but now some are un-
compensated and it is these electrons which cause the electric current. We note
therefore the important result that only certain specific electrons which are close
to the Fermi surface can contribute to the conduction mechanism. Note that a
similar effect was found for heat capacity where only those electrons within k&T
of the Fermi level could contribute to the heat capacity.

Fermi
surface
under
zero
field

Displaced
Fermi-
surface

Applied
electric
field

Figure 8.2 Velocity of free electrons within the Fermi sphere under zero electric field and under an
applied field £ along the x direction.

8.2.1 Quantum corrections to the conductivity in Ohm's law
How is Ohm's law modified if only the electrons close to the Fermi surface
contribute to the conductivity of a metal?
The highest energy that electrons can take in a metal in its ground state is the
Fermi energy £F. We also know that the density of occupied states is highest
around £F, since for a free electron model, for example, the density of states D(E)
has the following form, as shown in Section 4.4.7:

™^(%Te"
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This means that only a small change of energy AE is needed to raise a large number
of electrons above the Fermi level We will consider that the velocity of the un-
compensated electrons under the action of the field £ is close to the Fermi velocity.
This will be a reasonable simplifying assumption. With this in mind, we can
calculate the electric conductivity a, based on quantum-mechanical considerations.

Energy E , Density of available
7 states

Fermi
level

Density of occupied states N(E)

Figure 8.3 Population density of occupied electron states versus energy for free electrons according
to the free electron theory.

Our Ohm's law equation of Section 8.1.1 needs to be slightly modified to take into
account the fact that not all free electrons contribute to the conductivity. Hence,

/ = N*«/F, (8.15)

where v? is the velocity of electrons at the Fermi level and N* is the number of
displaced electrons, that is those in the region of Fig. 8.2 which contribute to the
conductivity.

8.2.2 Number of 'conduction' electrons contributing to conduction
How can we find out how many of the so-called conduction electrons in a metal
actually contribute to electrical conduction?
We need to obtain an expression for N*. This will clearly be dependent on the
density of states at the Fermi level D(E) and the displacement energy AE

N*=D(E)AE, (8.16)
and consequently

J = D(E)A£ev¥ (8.17)

= i^eD(E)^r^k. (8.18)
dfc

The term dE/dk is determined from the energy versus wave vector diagram for the
given case. For free electrons, we have E = fj2k2/2m and hence

d£ t>2k , / o i m— = = hv?, 8.19)
dk m

and this yields,
/ = v&D(E)h&k. (8.20)
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8.2.3 Displacement of a spherical Fermi surface under the action of an
electric field

How does the displacement of the electron wave vectors depend on other factors
such as the mean free time of electrons between collisions?
We will examine the displacement A& of the Fermi sphere under the influence of
an electric field £. Since we know that m dv/dt = e^ and since p = hk is the
momentum, it follows that the force on the electrons can be expressed as,

F = „£-.£-* (S.2.)
Hence,

dk = e-^dt (8.22)

or,

M = ̂ Af = ̂ r, (8.23)

where r is the mean free time of the electrons between collisions. With this
expression for A& we arrive at the following expression for the current density,

/ = v&2D(E)Cr. (8.24)

Only the projections of z/F along the direction of the electric field £, that is
VY cos 0, contribute to the current.

f+7r/^ AO
] = e2D(E)Cr (i;F cos 0)2 — (8.25)

J-7T/2 *

= ±e2D(E)Crv2. (8.26)

For a spherical Fermi surface there is a slight correction that gives

J = ±e2D(E)t;TV2, (8.27)

and finally, the conductivity is given by a =//£, so that

a = \e2v2rD(E). (8.28)

This quantum-mechanical expression for conductivity shows that not all
'conduction' electrons contribute to the conductivity, but only those close to the
Fermi surface. In addition, the conductivity is determined by the density of states
near the Fermi level. For metals such as copper, which has one conduction
electron per atom, this density is high, leading to high conductivity. For bivalent
metals such as calcium, which has two conduction electrons per atom, this density
is small, leading to a relatively low conductivity. Therefore, it is the density of
states at the Fermi surface, and not the classically expected total number of con-
duction electrons, that determines the conductivity of a material.
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83 DIELECTRIC PROPERTIES
How can we represent the response of a nonconducting material to an electric field?
Most electronic applications involve the use of alternating electric fields or currents.
In these cases the atoms in insulators oscillate under the action of the applied
electric field, and these oscillations can be expressed in terms of the dielectric
constant, e. This is often expressed in terms of real and imaginary components ÊI, £2

e = £oer = £i+i£2- (8.29)

This dielectric 'constant' is actually dependent on the frequency of the applied
electric field. When considering its dependence on the frequency of electro-
magnetic radiation it is often represented as e((J).

8.3.1 Polarization
How do we quantify the displacement of charge in a material under the action of an
electric field?
The net result of applying an electric field to an insulator is to cause the positive
and negative charges within the material to become displaced in opposite direc-
tions and the material consequently becomes electrically polarized. The polariza-
tion can result from the relative displacement of the electrons and ionic cores, or
alternatively from the relative displacement of positive and negative ionic cores [2].

The force F on a charge e under the action of an electric field is,

F = e£ (8.30)

and it is this force which causes polarization of a material by displacing the
positive and negative charges within an atom in opposite directions, or by dis-
placing the ionic cores within the lattice.

The electric polarization of the material is denoted by the symbol P. This is an
electric dipole moment per unit volume, which is measured in coulomb metres per
cubic metre (or effectively coulombs per square metre). The equation for P is

P = Np, (8.31)

where p is the dipole moment of an individual atom and N is the number of atoms
per unit volume. P can also be defined as the surface density of charge which
appears on the faces of the specimen when placed in a field. The polarization can
be expressed in terms of the electric field by the equation,

P = Xeeo£ = (er-l)eoE, <8-32)

where e0 is the permittivity or dielectric constant of free space and er is the relative
permittivity. We see therefore that the dielectric constant is a measure of the
amount of electric polarization induced by unit field strength.

Alternatively, the dielectric permittivity can be expressed as the ratio of
polarization to electric field strength P/f . A high dielectric constant means that
a material is easily polarized in an electric field. Typical values of the relative
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dielectric permittivity er are in the range 1.0 to 10 (dimensionless), although its
value can be much higher in some special materials, for example er is 94 in TiO2

[3. p. 267].

8.3.2 Dielectric field strength
How high an electric field can a material withstand before it suffers electrical
breakdown?
The dielectric field strength is a measure of the largest electric field strength that
an insulating material can sustain before the electrostatic forces holding the atoms
in place are overcome. Once this happens the material suffers electrical break-
down and suddenly becomes an electrical conductor. This breakdown voltage has
been discussed in Chapter 1, for example. Typical values of the dielectric strength
are in the range of megavolts per metre. However, it should be noted that the
breakdown strength often increases with frequency, and in particular for most
materials breakdown is somewhat inhibited above 108Hz [3. p. 272].

8.3.3 Electrical properties of noncrystalline materials
What about materials that do not have a regular crystalline lattice?
We have looked in detail at the electrical properties of crystalline materials.
In these cases, the regular periodicity of the atoms on the lattice sites leads to
relative simplicity of calculation. However, we need not restrict ourselves entirely
to these materials since electrical conduction also occurs in polymers, ceramics,
and amorphous materials and there is a need to provide theories and models for
these materials also.

8.3.4 Polymers
Why are some polymers found to be good conductors?
Most polymers are insulators, of course, but conducting polymers exist which have
electrical properties resembling those of conventional metals or semiconductors
[4]. Polyacetylene contains a high degree of crystallinity and a relatively high con-
ductivity compared with other polymers. Trans-polyacetylene has a conductivity
that is comparable to silicon. The electron band structure of this polymer has even
been calculated and it has been found that when all carbon bond lengths are equal,
this material has a band structure which is reminiscent of a metal. When the
carbon bonds alternate in length it is found that band gaps appear in the structure.

8.4 OTHER EFFECTS CAUSED BY ELECTRIC FIELDS, MAGNETIC FIELDS
AND THERMAL GRADIENTS

What other effects occur when a material is subjected to external influences such as
electric, magnetic and thermal fields?
There are a number of other phenomena that occur when a material is subjected to
electric, magnetic or thermal fields. We will mention only the most important of
these: magnetoresistance, the Seebeck effect, the Peltier effect, the Nernst effect
and the Ettingshausen effect.
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8.4.1 Magnetoresistance
What happens to the electrical resistance when a material is subjected to a mag-
netic field?
The magnetoresistance is the change in electrical conductivity associated with an
applied magnetic field. It cannot be explained on the classical (Drude) electron
model since with one carrier conductivity, constant relaxation time r and constant
effective mass the magnetoresistance is identically zero.

An example of zero magnetoresistance occurs in our explanation of the Hall
effect to which the deflection of charge carriers causes the build-up of a transverse
electric field which exactly counteracts the effect of the magnetic field. In this case,
under equilibrium conditions the motion of the charge carriers is identical in the
presence or absence of a magnetic field, because of this transverse electric field,
resulting in zero magnetoresistance.

However, if all charge carriers do not have the same properties the current flow
is disturbed by the presence of a magnetic field and some of the charge carriers
travel a longer distance between electrodes than in the absence of a field. This
leads to a larger observed resistivity and the difference between the zero field
resistivity and the measured resistivity under the applied magnetic field known as
magnetoresistance.

The resistivity is defined as p = £JJ where £ and /, the electric field and current
density, are measured along the same direction. Since the resistivity is, in general,
dependent on the magnetic field we find that

P = e// = Po(l+w?r), (8.33)

where cjc = eBJm and Bj_ is the magnetic induction perpendicular to the direction
of measurement of current,

p = pQU+e^±T\ (8.34)

and r is the mean free time of the electrons between collisions. The magneto-
resistive term is then simply

e2B2

Pmag = PO 2~T. (8.35)

8.4.2 Thermoelectric power (Seebeck effect)
What happens to the voltage across a material when it is subjected to a temperature
field (temperature gradient)?
If a material is subjected to a temperature gradient, the energy of the carriers at the
hot end is greater than at the cold end and this leads to a carrier concentration
gradient along the material. Displaced charge resulting from this concentra-
tion gradient generates a counteracting electric field £ until the total current
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becomes zero. The magnitude of this electric field in terms of the voltage per
degree difference is known as the thermoelectric power a. In a metal,

a-%*2£. (.JfldT eE?

where £F is the Fermi energy. In a metal, a is typically a few microvolts per Kelvin.
In a semiconductor, for an n-type material

" = --(A + ̂ ?)' <8'37>e \ kzT )

and for a p-type material

&B (A EF-EV\ /Q 7Q\OL = A H . (8.38)
« V ¿eT /

In a semiconductor, a is typically a few millivolts per Kelvin. Here A is a constant
which depends on the specific scattering mechanism, A = 2 for lattice scattering
and A = 4 for charged impurity scattering, Ec is the energy level at the bottom of
the conduction band Ev is the energy at the top of the valence band and Ef is the
Fermi energy.

The Seebeck effect is utilized in the thermocouple which is used for measuring
temperature. The thermoelectic power a is determined from the open-circuit
electric field £ caused by a temperature gradient dT/dx

-À-AÏ- <sj9)
8.4.3 Peltier effect
What happens to the temperature gradient when a current flows in a material?
When a current flows in a material, a temperature gradient is developed. This, of
course, is the inverse of the Seebeck effect and is used in some cases for
temperature control. The Peltier coefficient TT is simply the ratio of the electrical
current density / to the thermal current density /Q

,=*U-*<%**). (8.40)

8.4.4 Nernst effect

What happens when both a magnetic field and a temperature field (temperature
gradient) are applied simultaneously to a material?
When a magnetic field is applied at right angles to a temperature gradient, the
diffusing charge carriers are deflected in the same way as when the magnetic field
is applied at right angles to a conventional electric current. The result is a Nernst
voltage. However, since charge carriers of both signs diffuse in the same direction
the polarity of the Nernst voltage is not dependent on the sign of the charge carrier.
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8.4.5 Ettingshausen effect
Do we therefore also get a transverse temperature field (temperature gradient) in the
Hall effect?
In the Hall effect, the application of a magnetic field normal to the passage of an
electric current leads not only to a transverse voltage but also to a transverse
temperature gradient. The appearance of this temperature gradient is known as
the Ettingshausen effect. This arises because charge carriers with different energies
(velocities) are deflected differently by the magnetic field. This is a small effect
which adds to the Hall voltage.

8.5 THERMAL PROPERTIES OF MATERIALS
Which factors determine the thermal properties of materials?
The thermal properties of materials can be determined principally by the elec-
trons, as in the case of thermal conductivity of metals, or principally by the lattice,
as in the case of thermal conductivity of insulators or of specific heat capacity [5].

8.5.1 Thermal conductivity
How does thermal conduction take place in materials?
Thermal conductivity of materials varies from 6 x 103 Wm"1 K"1 in silver and
copper to 5 x 10~2 Wm"1 K"1 in sulphur [6], In the case of metals, the thermal
conduction mechanism is similar to the electrical conduction mechanism and
proceeds via the free electrons which migrate throughout the material. In semi-
conductors, conduction can take place by the electrons which are thermally
stimulated into the conduction band.

In insulators, another mechanism must be involved and in this case the thermal
conduction is due to phonons which are created at the hot part of a solid and
destroyed at the cold part. These phonons provide the mechanism by which
energy is transfered though the material. In metals the phonon contribution to
thermal conductivity is also present, but the electronic contribution is so much
greater that in these cases the phonon contribution is neglected.

We have already defined the thermal conductivity K in Section 1.5.1. It is the
ratio of the heat flux/q( = Q/A) to the thermal gradient dT/dx

K=-(dik)> (8-41)

and its units are Js ] m 1 K l. .

8.5.2 Mechanism of thermal conduction
How can we develop a theory of thermal conduction based on our knowledge of the
electronic properties*
If we begin from the assumption that thermal conduction can arise from both the
motion of free electrons and phonons, we can derive a theory of the thermal
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conductivity. Again, as in electrical conductivity, only those electrons close to the
Fermi surface can contribute to the thermal conductivity.

8.5.3 Thermal conductivity of metals

How is heat conducted in metals?
From quantum mechanics we have shown that in the electrical conduction process,
only those electrons close to the Fermi surface can absorb energy and hence
contribute to the conductivity. The same is also true for the thermal conductivity.
Therefore, to a very good approximation the velocity of those electrons con-
tributing to the thermal conductivity is the velocity at the Fermi level Vp.

The number of participating electrons N* is determined by the population
density at the Fermi energy N(EF). To a first approximation, this is about 1% of
the number of free electrons per unit volume. As we have already seen in Section
4.5.1 this gives the following contribution to the electronic heat capacity,

C5=^N*B£-, (8.42)2 TF

c .̂
We will now show that a relationship exists between the specific heat capacity and
the thermal conductivity.

Temperature: T0 + ig] / T0
 T°~(£]€

Hot
end

Cold
end

Figure 8.4 Thermal conduction by electrons in a linear section of material under the action of a
thermal gradient.

We consider the situation depicted in Fig. 8.4. where i is the mean free path
length of the electrons between collisions. Assume that heat flow is linear only
along the x direction and is zero in the plane perpendicular to the x direction.
In this case if we consider a section of length If. with unit cross-sectional area, the
heat flux is,

/Q = Eout - Ein, (8.44)
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where E-m is the heat energy flowing in per unit time at the left end, and £out is the
heat energy flowing out per unit time at the right end:

= 2z\k*^ (8'45)

where z, the number of electrons per unit time impinging on the end face, is

z = \N*v. (8.46)

We might reasonably assume that N*, the number density of free electrons
contributing to thermal conductivity, is similar to the number contributing to the
thermal heat capacity N* = 2C$/3¿B5 since in both cases the electrons must be able
to absorb heat energy:

fc-T-waH^s- <8-47'
From the earlier equation for the thermal flux/q = KdT/dx, it is clear that

K = ±CSvt. (8.48)

Notice the important result that the thermal conductivity and electronic heat
capacity are related. This is at first a surprising result. Here, i is the mean path
length between two electron collisions and v is the average velocity of electrons.

Since only electrons close to the Fermi level can take part in this we will replace
N* with

NF(=N(EF)*BT = ̂ £*BT)
V 6 £F J

the number density of electrons at the Fermi surface, replace i with £p the mean
free path of electrons at the Fermi level, and replace v with t/F the velocity of
electrons at the Fermi surface. Substituting into the above expression for CJ and
using the quantum-mechanical expression for heat capacity

TT^N^TCv-y-ET
from eqn (4.55), the equation for K becomes

K = ~NkiTvfef. (8.49)
OjCp

Therefore, the thermal conductivity increases with mean free path ¿F> number of
electrons per unit volume, and velocity of electrons at the Fermi surface Vp.
Remembering that E F = m*Vp/2, and that t? = TV?

K = ̂ NkiTr. (8.50)
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The thermal conductivity increases with NF, T and r and decreases with m*.
We can reasonably have expected the conductivity to have increased with the
density of states at the Fermi level and the mean free time between electron col-
lisions. Similarly we expect conductivity to increase with increasing electron
mobility (or decreasing effective mass). However, we might at first be surprised at
the increase with temperature. This, however, is taken care of in the temperature
dependence of r, which can be used to compensate for this.

8.5.4 Thermal conductivity of insulators
How are thermal conductivity and heat capacity related in insulators?

Once again the thermal conductivity K is related to the heat capacity by the
expression

K=±CX (8.51)

but now C[ is the lattice heat capacity of the phonons, v is the phonon velocity and
¿ is the phonon mean free path.

8.6 THERMOLUMINESCENCE
What other thermal properties are of interest?
We now go on to consider other thermal properties that have important but less
wide-ranging application. One of these is thermoluminescence. Thermolumines-
cence is the emission of electromagnetic radiation, in the visible spectrum, when
certain materials are heated [7]. These materials must be either insulators or
semiconductors, and they must have a large number of electrons trapped in
impurity states in the band gap. The emitted radiation from thermoluminescent
materials is different from the well-known black-body radiation (incandescence)
which depends on the fourth power of the absolute temperature, Stefan's law.
A typical thermoluminescence 'glow curve' is shown in Fig. 8.5.

Thermoluminescence

Incandescence

100 200 300 400 500
Temperature (°C)

Figure 8.5 Thermoluminescent glow curve of emitted light intensity versus temperature.
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8.6.1 Mechanism of thermoluminescence
What distinguishes thermoluminescence from incandescence in terms of the elec-
tronic properties?

If we have an electron band structure in which there is a band gap, with a
number of isolated defects or impurity states in the band gap, and a Fermi level
between the bands as shown in Fig. 8.6, then electrons can be trapped in these
impurity states.

Energy

Fermi
energy

Conduction
Band

Electron
Traps

~HÓ¡¿
' Traps

Valence
Band

Figure 8.6 Schematic band structure diagram showing band gap with electron and hole traps.
Charged particles are held in the traps for long periods. When they escape they
recombine and emit light.

Electrons become trapped in these localized energy levels by being stimulated
into the conduction band and then dropping down into the localized energy states
in the band gap instead of back into the valence band.

The lifetime of electrons in the traps depends on a number of factors, including
the prevailing temperature T and the depth of the trap below the conduction band.
The lifetime can actually be many years, and this is made use of in thermolumi-
nescent dating of pottery and other ceramics, for example., and in radiation dose
monitoring using thermoluminescent sensors. The requirements for a material to
be able to exhibit thermoluminescence are:

(a) presence of a band gap,
(b) presence of impurity energy states in the band gap,
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Figure 8.7 Mechanism of electron trapping in thermoluminescence. (I) Electron is excited into the
conduction band; (2) electron moves freely within the conduction band; (3) electron falls
into localized energy state (electron trap).

(c) long lifetime of electrons in traps,
(d) material must have been subjected to radiation to excite electrons from

valence band before becoming trapped,
(e) material must not have been inadvertently heated, which could empty

electrons from traps.

8.6.2 Theory of thermoluminescence

How is the light emitted in thermoluminescence?
Once we have electrons located in traps in the band gap we need to explain how
this leads to the emission of light. Essentially, electrons are thermally stimulated
from the traps into the conduction band and later they fall back into the valence
band, emitting a photon as they do so.

Conduction
band

Valence
band

Figure 8.8 Mechanism of electron excitation and thermoluminescent emission of light.
(I) Thermal stimulation from trap to conduction band, (2) Movement within
conduction band, (3) Transition to valence band with photon emission.
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If we have an electron located in a trapped state at an energy AE below the
conduction band, then the probability of the electron being thermally stimulated
into the conduction band in unit time is given by the Arrhenius equation,

/-AE\
p = sexpf-j-^rj , (8.52)

where s is a constant, with dimensions time"1 and typically of magnitude 1011 to
1017s l. This means that there is a time frame associated with the occupancy of
the electron trap once the electron is there.

8.6.3 Occupation and vacation of trapped states by electrons
How does the occupancy of electron traps vary with time?
The probability of filling any state in the band gap will also be dependent on time.
If dN/dt is the rate of stimulation of electrons from traps into the conduction
band, then

^=-Np, (8.53)

where N is the number of electrons in traps and p the probability of escape in unit
time. This simply states that the number of events leading to stimulation of
electrons into the conduction band is proportional to the number of electrons
sitting in traps. Integrating this equation gives,

-loge(^-) = fpdi , (8.54)
\NO/ Jo

N = N0exp(-pi), (8.55)

and,

N = Noexp(-sexp(^Vy (8.56)
V V KfiT / /

This is the Randall-Wilkins equation [8] which describes the number of elec-
trons remaining in traps as a function of both time t and temperature T. We know
that eventually an electron must escape from a trap, and so the integral of p over
the time interval t = 0 to t = oo must be unity

P pdt=l. (8.57)
Jf=0

8.6.4 Lifetime of electrons in traps
How can we determine the time an electron will, on average, stay in the elec-
tron trap?
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Clearly the lifetime of occupancy of an electron state is inversely proportional to
the probability of a transition in unit time p. We may define this lifetime r as a
function of temperature T by

r(T) = J^ (8.58)

= -exp(^Y (8.59)s \kETJ

Therefore raising the temperature T decreases the expected lifetime of the
electrons in the traps. This is what we should expect, since more thermal energy
increases the probability of the electron escaping by thermal stimulation.

From the exponential decay equation N = NO exp(- pt) it is possible to define a
half-life for the occupancy of the electron traps. Simply, when the number of traps
remaining occupied has declined to half, N = No/2 we have the half-life of the
occupancy r1/2

I = exp(-pr1/2), (8.60)

r1 /2=lloge2. (8.61)

8.6.5 Intensity of light emitted during thermoluminescence
What factors determine the intensity and frequency of light emitted during
thermoluminescence?
The intensity of light emitted during thermoluminescence is dependent on the rate
of emptying of the electron traps AN/at. If we assume that every electron removed
from a trap enters the bottom of the conduction band and then instantaneously
falls back to the top of the valence band with emission of a photon of energy equal
to the band gap energy, then the following will occur:

(i) Emission of light of a single frequency, v = Eg//?,
(ii) Intensity of light will be equal to the rate of emptying of electron traps.

i~£
= Np (8.63)

= Nsexp(-£^\ (8.64)
V ^T )

where AE is the energy difference between the traps and the conduction band.

8.6.6 Emission of light on heating
How does the emitted light intensity depend on time and temperature for a single
type of electron trap?
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Suppose then the temperature of the specimen is raised at a constant rate,

^Jr = & (8-65)

then the fractional change in occupancy dN/N is,

jj-=-P<** (8-66)

f=-sexKï^)d'- (8-67)
Replacing at with dT//3 gives

f=-^exp(if)dT- (8'68)

Integrating this expression to give the number of occupied states leads to the
following expressions,

'O-JXwh
N = N,«p{-0exp(^)ir}, (8.70)

and since we have stated that the intensity of radiation is given by

™(if)
we are led to the conclusion

i=N°"*p{-£'Hi^)dTHw) (8-7i)
This emission assumes a single type of trap at an energy AE below the conduction
band, a constant rate of change of temperature and a constant value of s for all
traps of the given type.

8.6.7 Location of the peaks in thermoluminescent intensity
How can the depths of the electron traps below the conduction band be studied
from the thermoluminescent glow curve?
When intensity of emission / is measured as a function of temperature T as the
temperature is swept at a fixed rate, peaks in the intensity will correspond to
the depth of electron traps below the conduction band.

An empirical relationship has been given between the depth AE in electron volts
(eV) and the peak temperature T* by Urbach [9]

A£ = ̂ . (8.72)
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100 200

Temperature (°C)

Figure 8.9 Thermoluminescent glow curve for TLD 100 dosimeter with several intensity peaks
corresponding to several depths of electron traps. Reprinted from R. K. Bull, Nud.
Tracks and Radiation Meas., II, p. 108, copyright 1986, with kind permission from
Elsevier Science.

8.6.8 Applications of thermoluminescence
How is thermoluminescence used in its primary applications of radiation dosimetry
and archaelogical dating?
Thermoluminescence finds applications in radiation dosimetry [10], geological,
and cosmological dating and in the investigation of radiation damage in solids.
The thermoluminescent glow curve gives information about the total radiation
dose absorbed by the material. For dosimetry this is all that is required. The
elapsed time since formation of a solid can be calculated for dating purposes
assuming a certain average background radiation intensity over a period of time,
assuming the material has not been heated in the interim. If the material has been
heated this would empty some or all of the electron traps, effectively resetting the
thermoluminescent clock. A useful review of thermoluminescence and its
applications has been given by Bull [11].
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EXERCISES
Exercise 8.1 Drift velocity of conduction electrons
The Fermi energy of aluminium is 12 eV and its electrical resistance at 300 K is
3 x 10~8 iîm. Calculate the mean free path of the conduction electrons and their
mean drift velocity in a field of 10 Vm"1. (Atomic weight of aluminium = 27,
density = 2700 kg m~3).

Exercise 8.2 Conductivity in intrinsic and extrinsic semiconductors
A sample of n-type germanium contains 1023 ionized donors per cubic metre.
Estimate the ratio at room temperature of the conductivity of this material to that
of high-purity intrinsic germanium. Assume the band gap in germanium is 0.7 eV.

Exercise 8.3 Thermoluminescence and lifetime of electrons in traps
If the lifetime of trapped electrons in a particular ceramic at 273 K is 1010 s (320 y)
calculate the depth of the electron traps below the conduction band. If the
frequency parameter s = 4.64 x 1017 s"1, then calculate the temperature at which
the peak occurs in the thermoluminscent glow curve, and calculate the lifetime of
the same electrons in the same traps at a temperature of 373 K.

Use classical electron theory in the following three exercises
Exercise 8.4 Electron and lattice contributions to the thermal conductivity
The thermal conductivity of germanium at a temperature of 300 K is 80
Js"1 K"1 m"1, and its electrical resistivity is 1 x 10~5 iîm. Calculate the ratio of
electronic heat conductivity to lattice heat conductivity of the material.

Exercise 8.5 Classical explanation of thermal conductivity
Determine the thermal conductivity of a metal assuming the mean time between
collisions of the electrons is 3 x 10~14 s at a temperature of 300 K, and the number
of free electrons per cubic metre is 2.5 x 1028.
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Exercise 8.6 Mean free path of (free9 electrons
Find the mean free path of conduction electrons in silver at room temperature
from the known values of heat capacity and thermal conductivity. You can
assume a Fermi energy of Ep = 5.5eV, a thermal conductivity of K = 410
J s~ l K"1 m and that the electronic heat capacity is 1% of the lattice heat capacity.
The density of silver is 10500kgm~3. [Hint: Remember that the heat capacity Q
in the equation K = C*vfJ3 is given per unit volume.]
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9 OPTICAL PROPERTIES OF MATERIALS

OBJECTIVE
We have touched briefly on the optical properties of materials in the early
chapters, but here we must bring together the concepts of electron structure and
the known optical properties of materials. This is done by identifying the
allowed energy transitions which determine the main features of the optical spec-
trum. This means that we need to connect measured optical properties with the
allowed electron energy levels. The major classification of electron transitions is
here between transitions within the same band (intraband) and transitions be-
tween different bands (interband). The former are lower-energy transitions
which lead to the high reflectivity of metals in the visible spectrum. The latter are
higher-energy transitions which can lead to specific colours in materials. Various
methods for measuring the optical properties are discussed including both
conventional static optical measurements and differential techniques under
external modulation of field, temperature or stress. Finally, the specialized topics
of photoluminescence, and electroluminescence are discussed.

9.1 OPTICAL PROPERTIES
What quantities need to be measured to completely determine the optical properties
of materials?
In previous chapters we have shown that the optical properties of materials can be
described in terms of two constants. These are the refractive index n and the extinc-
tion coefficient k. Alternatively we can choose the real and imaginary components
6] and 62 of the dielectric 'constant' or complex permittivity. The reflectance R
can be expressed in terms of either of these two pairs of parameters [1].

The so-called optical constants change with frequency of incident light (electro-
magnetic radiation), or equivalently, we can say that they change with the energy
of the incident photons. When discussing the 'optical' properties of materials, the
term is often interpreted widely to include other parts of the electromagnetic spec-
trum and not just the visible range of frequencies. Table 9.1 shows the frequencies,
wavelengths and photon energies of different types of electromagnetic radiation.

9.1.1 Penetration depth 6, and absorption coefficient a
How can we describe empirically the reduction in intensity of light when it passes
through a material*
When discussing the electronic transitions in materials that arise from the
absorption of photons we should remember that these do not necessarily take
place throughout the bulk of the specimen. The depth of penetration of incident
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Table 9. / Frequencies, wavelengths and photon energies of various types of radiation within the
electromagnetic spectrum.

Type

Gamma-rays and X-rays
Ultraviolet (typical value)
Violet
Blue
Green
Yellow
Orange
Red
Infrared (typical value)
Microwaves and radio waves

Frequency
(IO'4Hz)

1 000 and above
10
7.50-7.05
7.05-6.10
6.10-5.21
5.21-5.12
5.12-4.63
4.63-4.28
3
0.003 and below

Wavelength
(nm)

3 and below
300
400 424
424-491
491-575
575-585
575-647
647-700
1000
I06 and above

Energy

(io-|9j)
660 and above
6.6
4.97-4.69
4.69-4.05
4.05-3.46
3.46-3.40
3.40-3.07
3.07-2.84
2
0.002 and below

(eV)

4 1 2 and above
4.12
3.10-2.92
2.92-2.53
2.53-2.16
2.16-2.12
2.13-1.92
1.92-1.77
1.25
0.00 125 and below

light depends on the frequency of the light and the optical constants of the
material. The depth at which the intensity of the incident electromagnetic wave is
attenuated to 1/e of its value is called the penetration depth è. This is expressed by
the following equation,

/ = /o exp(-z/¿), (9.1)

where z is the distance into the material. Replacing 6 by the attenuation coefficient
a, which is also widely used to characterize materials, gives the relation,

/ = /o exp(-oz), (9.2)

which is known as Lambert's law or Beer's law. In transparent materials, such as
various different types of glass, 6 is large being of the order of 0.1-0.3 m, while in
metals 6 is very small being of the order of 10~8m.

9.1.2 Physical significance of the optical constants n and k
How do the observed optical constants relate to the absorption of a wave in a
material medium?
The solution of the wave equation in a material with optical constants n and k
leads to the following equation for the electric vector £ [2],

^)=£oexp(:^)exp(i,{,-^}). (9.3)

incident damping oscillatory
amplitude term term

£x is the electric field component parallel to the surface, u; the frequency of the
incident radiation, z is the distance normal to the surface of the material, x is a
direction parallel to the surface of the material and c is the velocity of the incident
light wave. The optical constants n and k have been defined in Sections 1.4.1 and
1.4.2. Since u/c — 2?r/A this equation can be expressed alternatively in terms of
the wavelength A:
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9.1.3 Dielectric constants of materials
How are the optical constants of a material related to the dielectric constants?
The above equation for the parallel component of £ as a function of depth z
contains two terms, an exponentially decaying term which is dependent on k and
an undamped wave term which is dependent on n. Therefore n affects the phase of
the light wave in the material and k affects its amplitude. The optical properties
can equally be expressed in terms of the real and imaginary parts of the dielectric
constant er as follows,

er = el+ \£2 = (n + i£)2, (9.5)

where the total dielectric constant is e = £Q(CI + ¿£2).
The intensity of light, which is proportional to £2, is given by,

I = £2 (9.6)

= /oexp(^), (9.7)

and from this equation we can use the definition of the penetration depth 6 as the
distance required to decrease the intensity by a factor of 1/e:

¿-p(^)4
Under these conditions the penetration depth 6 is

¿=¿r¿' <9-9)

and the attenuation coefficient is

1(jjk 47tk
a = = —. (9.10)

C A

Notice that 6 depends on k but not on n. Some typical values of extinction
coefficient k and penetration depth 6 in the visible range of the spectrum are given
in Table 9.2.

Table 9.2 Values of extinction coefficient and
penetration depth for various materials in the
visible range of the spectrum.

Material

Water
Glass
Graphite
Gold

k

l .4x IO"7

l .5x IO"7

0.8
3.2

6(m)

0.32
0.29

6x I0~8

l .5x I0~8
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Incident light
Incident light Reflected

light
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Figure 9. / Refraction and reflection of light by a material medium.

We see therefore that while optical properties of materials such as water and
glass are the result of a bulk measurement, in graphite and gold they are restricted
to measurements made over a few nanometres at the surface as indicated in
Fig. 9.1. Once again the fact that light only penetrates a few nanometres in some
materials implies that those materials must have high reflectance. Reflectance
measurements on metals are highly sensitive to the surface condition (e.g. presence
of oxide coating) and a question also remains whether a surface measurement
under these conditions is representative of bulk material.

9.2 INTERPRETATION OF OPTICAL PROPERTIES IN TERMS OF SIMPLIFIED
ELECTRON BAND STRUCTURE

How can the features of the optical reflectance spectrum be related to the electron
band structure?
We have also shown in Section 6.2.1 that the optical properties can be explained
in terms of the electronic properties of the materials. The high reflectance of
metals is a result of the partially filled conduction band, as shown in Fig. 9.2,
which allows photons to be absorbed and reflected over a wide range of energies,
forming a continuum of energies from the infrared up to the visible range. In the
visible or ultraviolet, however, an energy is reached beyond which the absorption
and reflection usually decrease markedly in metals, as shown in Fig. 3.7, due to
an inability to excite electrons to just above the top of the conduction band. The
energy at which this occurs represents the energy between the Fermi level and
the top of the conduction band.

In semiconductors, reflectance and absorption are low in the infrared, but
absorption becomes possible as soon as the photon energy becomes larger than the
band gap. Consequently, semiconductors have higher absorption and reflection in
the ultraviolet. This has been shown in Fig. 7.12.
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Energy E Energy E ¡ ¡

Metal
Absorption high for ft w < AE
Absorption Iwo for h w > AE

Absorption low for h w < Eg
Absorption high for ft w > Eg

Figure 9.2 Schematic band structure diagrams for a metal and semiconductor.

9.2.1 Summary of optical absorption processes
How can the various electronic transitions be classified*
(a) Interband transitions
(i) The highest-energy transitions are those from the bottom of the valence band

to the top of the conduction band. Changes in the density of states across
these bands affect the absorption of light at differenct energies and so give rise
to a frequency dependence of the absorption coefficient.

(ii) Other lower-energy interband transitions from the top of the valence band to
the bottom of the conduction band also occur. The 'absorption edge' occurs
at bu = Eg the gap energy. The extinction coefficient k in semiconductors is
usually in the range (107-108 m"1) for energies above the band gap energy Eg.
However, k decreases by several orders of magnitude once the energy drops
below the band gap energy Eg because there are no longer energy states for
the excited electrons to occupy so they cannot absorb the energy of the
incident photons.

(iii) Another electronic process is known as exciton generation. It is an excitation
which produces a bound electron-hole pair. The electron is trapped in a
localized energy level in the band gap while the hole remains mobile in the
valence band. The exciton can dissociate into independent free carriers or can
recombine with the emission of a photon or phonon.

(iv) Excitation of electrons from localized trap sites in the band gap into the
conduction band can occur at energies lower than Eg. This usually occurs
from optical absorption, although it can also arise from thermal excitation.
The optical absorption arising from this process is much lower than for
interband transitions because there are relatively few trapped electrons
compared with electrons in the valence band.

(b) Intraband transitions
In metals, the absorption of photons by electrons occurs over a continuous wide

range of energies beginning effectively from zero energy. This usually involves
the absorption or emission of phonons to conserve momentum. In this process
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Conduction
band

Valence
band

Figure 9.3 Classification of the principal types of electron transitions: ( I ) high energy interband
transitions, (2) transitions across the band gap-absorption edge, (3) exciton generation
(bound electron-hole pair), (4) impurity level excitation, (5) intraband transition.

the electrons move between energy states in the same band. The intraband transi-
tions occur in metals, and they are responsible for the high reflectivity of metals at
low energies.

The various types of electronic transitions are represented on the 'flat band'
diagram of Fig. 9.3.

9.2.2 Colour of semiconductors
How is the colour of a material determined by its electronic structure?
The band gaps of certain semiconductors, such as the III-V semiconductors can be
changed by alloying. If the band gap of a range of semiconductors varies from
3.5 eV (ultraviolet) to 1.5 eV (infrared) then when these are illuminated with white
light the colour of the materials by transmission changes as progressively more of
the visible spectrum is absorbed, beginning from the high-energy blue end of the
spectrum and ending with all optical energies being absorbed. The colours change
from colourless to yellow, orange, red and finally black, depending on whether all
of the visible spectrum or only a portion of the longer wavelength region is
transmitted. Here, of course, certain colours by transmission are not possible
because of the nature of the absorption process.

We should also note that colour by transmission and colour by reflection will be
different in these cases because of the interband absorption process. So a material
with a band gap in the yellow region of the visible spectrum, 2 eV might, when
illuminated with white light, appear orange-red by transmission but blue-green by
reflection, since only the blue-green portion of the spectrum can be absorbed and
hence reflected.

Colour itself is a subjective phenomenon. For example, a suitable combination
of yellow and blue light may appear green to the eye, even though a spectral analy-
sis would reveal that each of the original frequency components is still present. This
is simply due to the physiology of the human eye which interprets the presence of
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certain frequencies of light as colour in a nonunique way. The eye detects colours
only in terms of the combinations of 'primary' colours: red (565 nm, 2.18 eV),
green (535 nm, 2.3 eV ) and blue (445 nm, 2.8 eV). It is possible to persuade the eye
that certain colours (i.e. frequencies) are present even when the actual spectrum is
merely a suitable combination of these 'primary' colours.

9.2.3 Direct and indirect transitions across the band gap
How does the probability of an interband transition depend on the difference
between the energy of the photon and the band gap?
If the probability of a direct, that is ¿-conserving, transition such as shown in
Fig. 9.4(a) is calculated, it is found to be dependent on the square root of the dif-
ference between the photon energy and the band gap energy. The absorption is
proportional to this probability and therefore,

/*- p \ l /2 /Q •* -I \

Naturally the probability of a transition is zero when hu < £g. Consequently, a
plot of a2 against hujp^oton gives a straight line with intercept equal to the band gap
energy £g.

The probability of indirect, that is phonon-assisted, transitions such as shown in
Fig. 9.4(b) is much lower than for direct transitions. This leads to a lower value of
absorption coefficient, by typically two or three orders of magnitude. The effects

Energy E Energy E

Wave vector k
Indirect

Wave vector k

Direct

Figure 9.4 Direct and indirect interband transitions shown on an £ versus k diagram.
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of indirect interband transition on the optical properties of solids are therefore
only noticeable in the absence of direct transitions. However, the transition
depends on (ku — £g)

2, that is

a = al(kuj-Ee)2. (9.12)

Here, a¡ for indirect transitions is much smaller than a¿ for direct transitions.

9.2.4 Impurity level excitation
How can electrons escape from local traps in the band gap?
The elevation of a trapped electron from an impurity level (or electron trap) in the
band gap to the conduction band can occur either by thermal excitation, or
alternatively by absorption of a photon. Usually, in order that thermal stimulation
can occur the energy of the trap has to be close enough to the conduction band so
that AE « k$T. Excitation by a photon is simply dependent on the energy of the
photon being greater than the difference in energy between the trapped state and
the bottom of the conduction band, hu > AE.

Imperfections, defects, or impurity levels are localized and so do not extend
throughout the solid. Therefore they are represented as a short line on the energy
band diagram. These imperfections usually are one of the following types: (i) point
defects, (ii) point impurities, (iii) dislocations and grain boundaries.

9.2.5 Purity of semiconductor materials
How closely is the impurity content controlled in 'electronic quality' semiconduc-
tor material?
In semiconductor materials, in which the engineering of band structures to meet
stringent requirements is essential, it is clear that the presence of unanticipated
defects must be kept to an absolute minimum. Otherwise the materials will have
unexpected and undesirable electronic properties. Therefore, production of
semiconductor materials takes place in extremely clean environments. The purity
of semiconductor materials is frequently better than one part in 106 (excluding the
doping materials which are also on the level of parts in 106). In metals, 'high
purity' usually means something like 99.9% or one part in 103. We see therefore
that much greater care is needed in the fabrication of semiconductors than is
needed for metals.

9.2.6 Identification of the occurence of interband transitions from band
structure diagrams

How can we locate the electronic transitions from an E versus k diagram?
It is possible to interpret the optical spectra in terms of the electron band structure
of a material [3]. If we take a very simple example of a metal with a band struc-
ture as shown in Fig. 9.5, we can identify the optical transitions that are possible.

Here, the minimum separation between the bands occurs at the zone boundary.
Since both bands are empty at this point, no transitions can occur here. A direct
transition can occur at the Fermi surface to the next-highest band with energy fjujQ.
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Energy E

Fermi level

Wave vector k

Figure 9.5 Direct electronic transitions at different locations within the Brillouin zone.

Transitions are then possible from all other occupied lower-energy states to the
corresponding points in the upper band. These are ¿-conserving. The highest-
energy transition is bu}m from the bottom of the occupied band to the top of the
next unoccupied band.

Electronic interband transitions are only possible from the region of ¿-space
from -¿F to +¿F in Fig. 9.5, which in this case represents the occupied states below
the Fermi level. The transitions with the lowest energy occur at k = —k? from the
Fermi level to the unoccupied level in the conduction band at k = ¿F- That is to
say these are direct (¿-conserving) transitions:

A£min = /M)- (9.13)

Other transitions are possible. Direct transitions over the range of energies from
hu>o to tjujm are possible. The highest-energy direct interband transition hujm occurs
in this case at the centre of the zone, the F point.

Indirect, that is phonon-assisted, non-e-conserving, interband transitions are
also possible, but these occur with much lower probability. An example of an
indirect interband transition is given in Fig. 9.6. The change in momentum of the
electron is +&Afe, and therefore a phonon of momentum -fcA& must be emitted
to conserve momentum.

Energy E

Brillouin
zone
boundary

0 ***phon»« wave vector k

Figure 9.6 Indirect interband transitions described within the first Brillouin zone.
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9.2.7 Intraband transitions
What low energy transitions are possible in metals?
Transitions between electron states in the same band are called intraband transi-
tions. These always need the assistance of a phonon, and so are indirect transitions.
They can only occur from occupied states to unoccupied states at the Fermi level
and above.

Energy E

Brillouin
zone
boundary

Fermi level EF

Wave vector k

Figure 9.7 Indirect, phonon assisted intraband transition within the conduction band of a metal.

These transitions are the archetypal 'free electron' transitions which are used to
describe the optical absorption and reflection process on the classical model.
These can occur in metals only, and are responsible for infrared absorption and
high reflectance in the optical frequency range in metals.

9.3 BAND STRUCTURE DETERMINATION FROM OPTICAL SPECTRA
How can the details of the electron band structure be investigated through
measurements ?
The principal methods of determining the electron band structures of materials are
optical methods, although a range of other techniques are used to give supple-
mentary information, including photoemission studies, de Haas-van Alphen effect
and theoretical band structure calculations [4].

Experimentally, reflectance is the easiest optical property to measure, but in
most cases R is a rather slowly varying function of wavelength and this makes it
very difficult to locate the exact energies of interband transitions. Also, R itself
does not contain all the available optical information. The absorption £2, or the
extinction coefficient k, are much more useful since they have rather sharper
features, but even these need supplementing with c\ or n data, respectively, to
completely specify the optical properties. As an example consider the reflectance
of aluminium which is shown in Fig. 9.8.
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Figure 9.8 Optical reflectance spectra of aluminium after Ehrenreich [5]. © IEEE 1965.
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Figure 9.9 Optical constants of aluminium after Ehrenreich [5]. © IEEE 1965.

Here we see a fairly typical metallic reflectance spectrum with high reflectance
at low energy and a sharp decay at about 15 eV, much as we might expect on the
basis of the Drude model. Notice some structure at about 1.5eV, but otherwise
the spectrum is featureless. The absorption e2 as shown in Fig. 9.9 has sharper
features, so that the existence of a transition at 1.5 eV is clearly indicated.

9.3.1 Case studies: optical reflectance and band structure
What do the electron band structures of real materials look like?
The optical absorption spectrum of aluminium is shown in Fig. 9.9. The main
spectral features occur at an energy of 1.5-2.0 eV. These can be attributed to
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Figure 9.10 Absorption coefficient EI spectrum of germanium. Reproduced with permission of
F. Abeles, Optical Properties and Electronic Structure of Metals and Alloys, published
by Elsevier, 1966.

parallel band absorption along the Z direction between the X and W points in the
Brillouin zone, where the band separation is about 2eV over a wide region
between the W point and the Fermi surface [6] as shown in Fig. 5.17. Another
region of parallel band absorption is along the S direction between the zone centre
F and the K point. Here, the parallel bands are typically 1.5eV apart.

The optical absorption spectrum for germanium is shown in Fig. 9.10. The main
features occur at energies of 0.8, 2.3 and 4.5 eV. These correspond to the transi-
tions F25' — > F2', A3 — » AI and £4 — » Si as shown in the band structure diagram of

Figure 9.11 Polarization e\ and absorption coefficient £2 spectra of copper. Reproduced with
permission from H. Ehrenreich and H. R. Philips, Rhys. Rev., 128, 1962, p. 1622.

195

f

cJ-of

Is.11O <•
CL ̂

Energy (eV)
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Fig. 7.3. The first of these is a direct transition representing the energy difference
across the F point which is not quite the minimum 'band gap' energy in germanium.

Figure 9.11 shows the absorption spectrum for copper which is fairly typical of
a free electron metal with high absorption at low energies. Spectral features occur
at 2, 5, 6 and 7 eV; these features correspond, respectively, to interband tran-
sitions Qi —» Q2 at the Fermi level, X5 —> X4 , L2 —> LI and £2 —> £3 at the K point
as shown in the band structure diagram of Fig. 5.16.

9.3.2 Modulation spectroscopy
Is it possible to accentuate the interband spectral features relative to the broad
backgound intraband absorption ?
Further enhancement of the spectra can be obtained by differentiation. This is
achieved experimentally by a collection of techniques known as modulation spec-
troscopy. In these methods the optical spectrum is modulated by the superposition
of alternating strain (piezoreflectance) [7], temperature (thermoreflectance),
electric field (electroreflectance), magnetic field (magnetoreflectance) and wave-
length [8,9].

All of these, with the exception of wavelength modulation, cause cyclic changes,
or perturbations in the electron band structure. These emerge as changes in the
optical properties. They cause an enhancement of the interband transitions over
the intraband transitions in the optical spectrum because the intraband contri-
bution to the optical properties is almost independent of the modulation, even
though the energy levels do change; whereas the sensitivity of the band gap to
modulation causes significant changes in the available interband transition ener-
gies. An example of the enhancement due to strain of the reflectance spectrum of
aluminium is shown in Fig. 9.12.

1 2 3 4 5 6
Energy (eV)

Figure 9.12 Piezoreflectance spectrum of aluminium [7]. Reprinted from D. C. Jiles, So//d State
Communications 47, p. 38, 1983. With permission from Elsevier Science.
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PHOTOLUMINESCENCE AND ELECTROLUMINESCENCE

The modulation spectroscopy techniques therefore lead to an enhancement of
features in the optical spectra by measuring the derivative of the optical param-
eters R, n and k (or R, e\ and £2) with respect to strain, or electric field, or
temperature, or magnetic field.

9.4 PHOTOLUMINESCENCE AND ELECTROLUMINESCENCE
What other methods are there for causing emission of light from semiconductors
and insulators?
In the previous chapter we discussed thermoluminescence which is the phenom-
enon of light emission due to interband transitions when a semiconductor or
insulator is heated. This effect was first discovered in quartz. It is different from
the familiar black-body glow radiation known as incandescence. Now we will
investigate other mechanisms for luminescence in materials. These include photo-
luminescence, optically stimulated emission of light, and electroluminescence,
electrically stimulated emission of light.

9.4.1 Photoluminescence: phosphorescence and fluorescence
How do phosphorescent and fluorescent materials work?
Phosphorescent materials are used widely for dials on clocks and watches because
they glow in the dark. By comparison, fluorescent materials glow in the light and
are used for 'day glow' colours. Whenever an electron is excited into a higher-
energy state it must eventually revert to a lower unoccupied state, and this occurs
with the emission of a photon. If the initial excitation is by incident light this
process is called photoluminescence.

The lifetime of the electrons in the higher-energy states determines the duration
of the emission process. If the lifetime is short then the emission of photons occurs
almost immediately and the luminescence stops when the light source is switched
off. This process is called fluorescence. If the lifetime extends over a period of

T~1S Conduction
Band

Valence
Band

T-5S

Fluorescence Phosphorescence

Figure 9.13 Fluorescence and phosphorescence: electron transition diagrams. Large r corresponds
to phosphorescence, small r corresponds to fluorescence.
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CHAPTER 9 OPTICAL PROPERTIES OF MATERIALS

several seconds or even a few minutes then the luminescence continues even after
the light source is removed. This process is called phosphorescence.

Both of these processes are caused by spontaneous emission of light. That is to
say there is no underlying mechanism to stimulate the reversion of the electrons
to lower energy states other than spontaneous transition. In general, the wave-
lengths of the light emitted in fluorescence and phosphorescence are different
from the wavelengths of the incident light, and are usually of a well-defined wave-
length that is determined by the band gap energy.

9.4.2 Electroluminescence
How can light emission be stimulated by an electric field?
Optical emission, or luminescence, in solids can be caused by a variety of
mechanisms. These are classified by the method of excitation. We have studied the
two best-known mechanisms, thermal stimulation, (therrnoluminescence), and
light stimulation (photoluminescence). A third method is electroluminescence
which is the excitation of electrons by an electric field [10]. This is used in the
creation of semiconductor light sources.

We will consider injection electroluminescence in a single pn junction of a
semiconductor. The electronic properties of such a junction have been discussed in
Section 7.8. When the n-type and p-type materials are placed in contact, electrons
flow into the p-type material leaving it with a negative charge and the n-type with
a positive charge.

If the p-type side of such a junction is then connected to the positive terminal of
a voltage supply, current is carried by the flow of electrons into the p-type material
where there are already free holes in equilibrium. Recombination of electrons and
holes can take place and this results in emission of photons.

In a material such as GaAs, which is a direct gap semiconductor, the absorption
edge rises very rapidly with photon energy so that the probability of radiative

Electron
flow

•9- -e — fio>

Hole
flow

-ve ' i +ve

Forward bias

Figure 9.14 Electroluminescence: electron transition diagram in a forward-biased pn junction. The
electrons are injected from the n-type material.
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EXERCISES

recombination is very high. In a positive p-sided pn junction with low impurity
concentrations strong emission of light occurs at low temperatures. However, at
higher impurity concentrations and higher temperatures the conductivity of the
material is too high and emission occurs principally by conduction band to
impurity site transitions. These result in the emission of photons of much lower
energy, usually in the infrared region of the spectrum.

The peak of the emission increases to higher photon energies as the current
through the junction increases until at a critical current the emission peak sharpens
considerably and laser action begins. We will discuss the operation of these solid-
state lasers in Chapter 12.
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EXERCISES
Exercise 9.1 Optical properties of metals and insulators
The optical constants n and k of four different materials are given in Table 9.3.

Tab/e 9.3 Optical constants at A = I240nm.Material n

1 1 .21
2 0.13
3 1 .51
4 1.92

k
(at A =!240nm)

12.46
8.03
I . l 2 x I0~6

l . 5 x I0~6
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From these values determine for each material the attenuation coefficient a,
the penetration depth e, the normal reflectance R, the dielectric constant c\ and the
absorption e2. Determine whether each of these materials is a metal or an insulator
based on these optical properties.

Exercise 9.2 Classification of principal electronic transitions
Discuss the principal electronic transitions that can occur in solids and relate them
to the band structure diagram. Explain the characteristic colours of materials both
in reflectance and transmission in terms of the electronic structure.

Exercise 9.3 Identification of material from optical absorption spectrum
The optical spectrum of an unknown material is given in Fig. 9.15. State whether
on the basis of this data the material is a metal or an insulator. Determine the
absorption threshold for the material and deduce for which optical wavelengths
the material is transparent and for which wavelengths it is opaque.

Using the data in Table 9.4 determine the material assuming it is one of the
three shown.

A B C

Electron mobility (m2

Electrical conductivity
(atSOOK^r'nT1

s-'NT1) 0.15 0.39 0.85

9 x l O ~ 4 2.2 1 x I0~6

Effective mass of electrons 0.98 1 .64 0.07
at4.2K(m*/m)

Band gap (eV) I.I 0.7 1 .4

Absorption edge (nm) 1 1 04 1 873 87 1

Energy (eV)

Figure 9.15 Optical spectrum of unknown material.
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Exercise 9.4 Equation of motion of 'free' electrons and the absorption of light
If the behaviour of electrons inside a material can be described by the classical free
electron model, including both the 'free' and 'bound' characteristics of their
motion, write an equation of motion for the electrons inside the material under
the action of incident light of amplitude £o and frequency LJ.

Explain the physical significance of the coefficients in this equation. Obtain a
solution for the position x of the free electron, and from this derive expressions
for the amplitude and phase of the electron's motion. Is there a resonance? If so
what would this correspond to in the optical spectrum of the material? Calculate
the characteristic penetration depth of light of wavelength 589 nm in aluminium if
it has an extinction coefficient of k = 6 (dimensionless).

Exercise 9.5 Effects of differences in band gap on optical properties of semi-
conductors
The semiconductor cadmium sulphide, CdS, has a band gap of 2.4 eV.

(a) What colour will CdS appear by transmitted light?
(b) A dopant (an electron donor) added to CdS has an energy level lying 1.0 eV

above the valence band, but below the Fermi level. What colour changes
would you expect to see for light transmitted through the material as the
amount of dopant is increased from 0 to 1000 parts per million?

(c) If the band gap of CdS decreases linearly with temperature according to the
relation £g = 2.56 - aT, where a = 5.2 x 10~4 eVK"1, describe the changes
in colour of light transmitted through a pure CdS crystal as the temperature is
changed from 0 to 1000K in 200-degree steps.

Exercise 9.6 Optical properties of direct and indirect band gap materials
Light transmission measurements made on a 1-micrometre thick film of lead
sulphide, PbS, at energies near its band gap energy are shown below. These data
have been corrected for reflection losses. On the basis of these data is the material
a direct or indirect band gap material? What is the band gap energy?

Wavelength (nm) % Transmission

2065 22.8
2155 25.1
2255 28.1
2360 32.0
2480 36.8
2610 44.5
2755 53.3
2915 72.8
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10 MAGNETIC PROPERTIES OF MATERIALS

OBJECTIVE
In this chapter we look at the magnetic properties of materials. The magnetic
properties are a special subgroup of the electronic properties of materials which
really form a separate subject. Nevertheless they can also be considered as an
integral part of the electronic properties of materials. The most important and
interesting magnetic state of a material is known as ferromagnetism. In this case
the relative permeability can be very high. This makes these materials useful in
transformers and inductors. Another property of ferromagnets is their retention
of magnetization. This is utilized in permanent magnets for both motors and
generators. In addition, particulate and thin film magnetic materials are used for
magnetic recording purposes. This application represents a very large market,
both for magnetic materials and the associated electronic support systems for
magnetic recording.

10.1 MAGNETISM IN MATERIALS
What causes magnetism in some materials?
The magnetic properties of materials arise almost exclusively from the motion of
the electrons. This motion, in the form of electron spin and electron orbital motion,
generates a magnetic moment associated with the electron. Much weaker magnetic
moments arise from the nucleus, but these are three orders of magnitude smaller.
Compare, for example, the size of the nuclear magneton jun = 5.051 x 10~27 Am2

with the Bohr (electron) magneton //B = 9.274 x 10~24 Am2.
There are two theories of the origin of magnetization or bulk magnetic moment

in solids which represent limiting or extreme cases. These are the localized or
atomic theory, and the itinerant or band theory. In the localized model, the elec-
tronic magnetic moments are considered to be bound to the ionic cores in the solid.
Such a model applies to the lanthanide series of elements in which the 'magnetic'
electrons are inner 4f electrons which are closely bound to the nuclei.

In the itinerant model, the magnetic moments are considered to be due to
conduction band electrons which originate as the outer electrons on the isolated
atoms. When the atoms are brought together, as in a solid, these electrons are
shared among the atoms and move freely throughout the material. This model is
considered by some authors to be more appropriate for the 3d transition elements
iron, cobalt, and nickel. In reality, even in the 3d series metals the itinerant
electrons spend more time close to the nuclei, and so the actual situation is
somewhere between these extreme or limiting models.
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Before proceeding further with these ideas, however, we will need a few
definitions.

10.1.1 Magnetic field and magnetic induction
How is a magnetic field generated*
A magnetic field is generated whenever there is electric charge in motion. We
denote this field with the symbol H. The magnetic field generated by an elemental
length of conductor ai carrying a current / is given by the Biot-Savart law,

dH = -L-,dexu, (10.1)
4?rr2

where r is the radial distance from the conductor at which dH is measured, u is a
unit vector along the radial direction, d£ is a vector along the direction of the
length of the conductor and dH is the elemental contribution to the total field at r.

The magnetic induction, denoted 5, is the response of a medium to the presence
of a magnetic field. Therefore, for a given field strength H, the magnetic induction
can be different in different media. The relationship between the magnetic induc-
tion and the magnetic field is called the permeability // of the medium.

B = //H. (10.2)

We should note immediately that /i is not necessarily constant for a material,
although in most cases it is either constant or nearly so. The important excep-
tion is the class of ferromagnetic materials for which // varies over an extremely
wide range.

The permeability of free space is determined, on the basis of our choice of the
metre, newton and ampere as units, to be 4?r x 10~7 Henry per metre (Vs A"1 m"1)
and is denoted by the symbol /¿0. Therefore in free space,

B = voH. (10.3)

10.1.2 Magnetization
How do we measure the magnetic response of a material?
When the individual magnetic moments associated with the electrons in a solid are
collectively aligned, perhaps by the action of an external magnetic field H, we
speak of magnetization. We define the magnetization as the magnetic moment per
unit volume and denote it by the symbol M. The magnetization increases as more
electronic magnetic moments are aligned in the same direction. When all magnetic
moments within a solid are aligned in the same direction, the magnetization
cannot get any higher. We therefore call this the saturation magnetization.

The magnetization M contributes, together with the magnetic field H, to the
magnetic induction B. Therefore we can write the totally general equation relating
M, H and B,

B = /MH + M), (10.4)

where //of/ is the induction which would be generated by the field H in free space,
and //oM is the additional induction contributed by the presence of the magnetic
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material. The magnetization is measured in units of amps per metre. Some authors
discuss the magnetization in terms of a bound surface current. We should state
clearly that this 'bound current' is a fictitious current which is merely invoked as a
convenience so that M and H can be treated equivalently.

We defined the permeability ¿¿ in Section 1.6.3 as the ratio of magnetic induc-
tion to field

M = £- (10.5)

Similarly, we defined the magnetic susceptibility \ m Section 1.6.4 as the ratio
of magnetization to field

X=~ (10.6)

and in the SI system of units fi — /¿o(l + x)-

10.1.3 Typical values of permeability and susceptibility
What values of permeability and susceptibility do various materials have?
The following table gives the susceptibilities and relative permeabilities of some
diamagnets, paramagnets and ferromagnets. In weak magnetic materials such as
diamagnets and paramagnets the susceptibility is usually quoted. In ferromagnets
permeability is usually quoted. In ferromagnets, because both values are large
(^>1) and the values of relative permeability and susceptibility differ only by
X = //r - 1> permeability and susceptibility are relatively close in value and, in
practice, the two terms are often used interchangeably in these materials, although
such usage is not strictly correct.

10.2 TYPES OF MAGNETIC MATERIALS
How are magnetic materials classified?
There are several different types of magnetic materials but we shall break them
down into three traditional categories,

Table I O.I Susceptibilities and relative
permeabilities. Material

Bi
Be
Ag
Au
Ge
Cu
0-Sn
W
AI
Pt
Mn
Fe

X

-1.31 x ICT6

-l.85x ICT6

-2.02 x I0~6

-2.74 x I(T6

-0.56 x IO"6

-0.77 x I0~6

0.19 x IO"6

6. l8x I0~6

l .65x IO"6

2l.04x IO"6

66.IOx IO"6

~l x IO3

J^
Mo

0.9999987
0.9999982
0.9999980
0.9999973
0.9999994
0.9999992
1.0000002
1.0000062
1.0000016
1.0000210
1.0000661
~l x IO3
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(i) Diamagnets \ < 0; //r < 1,
(ii) Paramagnets x > 0; Mr — 15

(iii) Ordered magnetic materials (e.g. ferromagnets) for which normally x > 0;
Mr » 1.

This categorization is, of course, rather an oversimplification of the different
types of magnetic ordering but is still used in traditional magnetism texts. The
ordered magnetic materials consist of several subcategories which include: ferro-
magnets, ferrimagnets, superparamagnets and even two subcategories with low
permeabilities, the antiferromagnets and helimagnets.

10.2.1 Diamagnets
How do diamagnets respond to a magnetic field?
These are materials which have no net magnetic moment on their atoms. In other
words, the electrons are all paired with spins antiparallel. When a magnetic field H
is applied, the orbits of the electrons change in accordance with Lenz's law, and
they set up an orbital magnetic moment which opposes the field. Since this
moment is in the opposite direction to the field in diamagnets the susceptibility
is negative

X < 0. (10.7)

The classical theory of diamagnetism was worked out by Langevin and has been
discussed by Cullity [1] and Chen [2].

10.2.2 Paramagnets
How do paramagnets respond to a magnetic field?
Paramagnets are materials which have a net magnetic moment per atom due to an
unpaired electron spin. In zero field these individual magnetic moments are
randomly aligned, but under the action of an external field H they can be aligned
in the field direction. As a result of this alignment of moments in the field direction
the magnetization M is parallel to the field and hence the susceptibility is positive,

X > 0. (10.8)

In general, however, very large fields are needed to align all the moments and so
the susceptibility, although positive, is usually very small, having a typical value of
x«io-5 .
10.2.3 Ordered magnetic materials
What other types of magnetic materials are there?
The third class of magnetic materials are the most interesting. These are the
ordered magnetic materials, the most important of which are the ferromagnets.
These include iron, cobalt, and nickel and their alloys and compounds, and several
of the rare earth elements, notably gadolinium, and their alloys and compounds.
Other ordered magnetic materials include the antiferromagnets, chromium and
manganese, the ferrimagnets such as iron oxide, and the helimagnets such as
dysprosium, terbium, holmium and erbium.
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10.2.4 Curie and Néel temperatures
What happens when the temperature of a magnetic material is raised?
The ordered state of any ferromagnet or ferrimagnet breaks down at a
temperature known as the Curie point Tc. Above this temperature the material
is disordered, that is the electronic magnetic moments point in random directions
even on a local scale. Values of Tc for some materials are shown in Table 10.2.

In antiferromagnets and helimagnets the ordering temperature is known as the
Néel point TN. Values of the Néel temperature for some materials are given in
Table 10.3.

Table 10.2 Curie temperatures of
various ferromagnets.

Table 10.3 Néel temperatures of various
helimagnets and antiferromagnets.

Material TN ( C)

Erbium —253
Holmium -253
Dysprosium -93
Terbium —43
Chromium 35
Manganese - 1 73

10.3 MICROSCOPIC CLASSIFICATION OF MAGNETIC MATERIALS
How are the electronic magnetic moments arranged in the various different mag-
netic materials?
The macroscopic classification into the three traditional groups, based on the
permeability values, needs significant modification when we consider the magnetic
ordering on the sub-microscopic scale of a few atoms. The microscopic classifica-
tion needs to include the types of order shown in Fig. 10.1.

10.3.1 Electron magnetic moments
Where are the magnetic moments located in a material?
If we consider the classical picture of an electron orbiting a nucleus and also spin-
ning on its axis, as shown in Fig. 10.2, we have charge in motion. Consequently,
we must have a contribution to the magnetic field and magnetic induction arising
through the Biot-Savart law.

In general terms this is correct; however, the classical picture has many flaws in
it. We will soon find that the numerical values of spin magnetic moment, which is
the most significant contribution, differ from the expected value.

In reality, there is no electric current here in the classical sense. Therefore the
classical model of the electronic magnetic moment merely serves to remind us that
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Paramagnet
(Random)

Ferromagnet

(Parallel)

Antiferromagnet
(Antiparallel)

Ferrimagnet

(Two sublattices)

Helimagnet

Figure I O.I Arrangement of magnetic moments on neighbouring atoms of a one-dimensional
lattice for various types of magnetic order.

electron

Figure 10.2 Classical model of electron orbiting a nucleus with orbital magnetic moment mi and
spin magnetic moment ms.

there is some link between the angular momentum of an electron and its magnetic
moment. However, since the angular momentum of the electron is a quantum
phenomenon, it is hardly surprising that the classical prediction breaks down.

We are left with an empirical relation between angular momentum p and
magnetic moment m

m = -yp, (10.9)

where the coefficient of proportionality 7 is the gyromagnetic ratio. An alternative
form of this relation, in terms of the Bohr magneton //B and the Lande splitting
factor g is,

m = ̂ pp, (10.10)
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where g = 2 for electron spin alone, and g = 1 for electron orbital motion alone.
Normally, the value of g lies between 1 and 2 indicating some orbital and some
spin contributions. In the 3d series elements iron, cobalt and nickel the orbital
contribution is negligible.

10.3.2 Order-disorder transitions and the Curie point
What factors determine the Curie temperature of a material?
The ordered magnetic structure which exists in a ferromagnet can be destroyed by
raising the temperature. The thermal energy added to the material has a tendency
to randomize the orientation of the magnetic moments, while the internal
exchange interaction tries to keep them aligned. Eventually, a sufficiently high
temperature is reached when the thermal energy overcomes the exchange and the
material undergoes an order-disorder transition.

All ordered magnetic materials (including ferromagnets, ferrimagnets, antiferro-
magnets, and helimagnets) can be made paramagnetic at a sufficiently high
temperature. However, not all paramagnets can be converted to ordered magnetic
materials by cooling.

The temperature at which the order-disorder transition occurs in ferromagnets
and ferrimagnets is known by convention as the Curie temperature Tc. In anti-
ferromagnets and helimagnets, the order-disorder transition temperature is known
as the Néel temperature. The behaviour of the susceptibility changes at these
ordering temperatures and we say that it exhibits 'critical behaviour' close to Tc

or TN.
Some materials have both a Curie and a Néel temperature because they exhibit

more than one ordered magnetic phase. Examples are terbium (TN = 230K,
TC = 220 K) and dysprosium (TN = 180 K, Tc = 85 K), which undergo transitions
paramagnetic —» helimagnetic —» ferromagnetic as the temperature is reduced.

10.3.3 Temperature dependence of susceptibility
How does the susceptibility of a magnetic material change with temperature, and
how can this be quantitatively described?
The Curie and Curie-Weiss laws were empirical discoveries of the temperature
dependence of the paramagnetic susceptibility of certain magnetic materials. It is
worth noting that these laws are not as widely applicable as is often generally
supposed. However, their simple form and their subsequent explanation using
classical statistical thermodynamics means that they hold an important place in the
historical development of our understanding of magnetism.

The Curie law states that the susceptibility x of a paramagnet is proportional to
the reciprocal of the temperature T in Kelvin

X = ̂ , (10.11)

where C is a constant.
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The Curie-Weiss law is a generalization of the Curie law to include those
materials which undergo an order-disorder transition to ferromagnetism or ferri-
magnetism at Tc. In these cases the susceptibility in the paramagnetic phase is also
inversely proportional to the temperature according to the relation

X = ̂ r, (10.12)

where C is a constant.
It is important to note that the Curie-Weiss law only applies to the suscep-

tibility of a magnetic material in its paramagnetic phase.

10.3.4 The Curie law
Can the Curie law be explained in terms of the statistical behaviour of an array of
individual magnetic moments?
The Curie law can be explained on the local moment model using classical
Maxwell-Boltzmann statistics. In materials with unpaired electrons, there is a net
(or resultant) magnetic moment per atom m which is the vector sum of the spin and
orbital magnetic moments. The energy of this moment in a magnetic field H is,

E = -^m-H. (10.13)

If we suppose that the magnetic moments are noninteracting and use classical
statistics, then the probability of an electron occupying an energy state E is

?(£) = PO exp(-E/*BT). (10.14)

If there are N magnetic moments per unit volume, then the magnetization M,
which is the magnetic moment per unit volume, will be found by integrating,

fN
M- mcosOdn, (10.15)

Jo
r cos0sin0exp(ij,omHcos9/kuT)d9

M = Nm ¿fi-p , (10.16)
sin 9 exp(¿/oraH cos 0/k^T) dO

«-"•M^)-^}- <"17>
and saturation magnetization occurs when all moments are aligned parallel. We use
here the symbol M0 to denote saturation magnetization, as distinct from spon-
taneous magnetization or technical saturation in a ferro- or ferrimagnet, which we
shall denote Ms (see Section 10.5.4)

M0=Nm. (10.18)
Therefore,

M=M0{coth(^)-J*°U. (10.19)
L V kzT ) vomH )
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This expression is the Langevin equation for classical paramagnetism based on
the local moment model. We can derive the Curie law directly from this. The
Langevin function can be expressed as an infinite series in ^mH/k^T. For high
temperatures ^mH/k^T < 1, so that the first term in the series dominates,

M=Nm{i0}' "»*»
j u • • r- N//0W

2 .and substituting C = —— , this gives
J&B

plT

M = —, (10.21)

, . M
and, since x = TT> we obtainH

X = ̂ , (10.22)

which is the Curie law.

10.4 BAND ELECTRON THEORY OF MAGNETISM
Are the 'magnetic' electrons localized on the ionic sites or are they free to move
throughout the material?
The itinerant theory of magnetism attributes the magnetic properties of materials
to unpaired electrons in the conduction band. These electrons by definition can
migrate throughout the whole material and are therefore 'itinerant'. This
interpretation is valid for some materials but not for others. It does seem to be
broadly applicable to the magnetism of the 3d series of elements such as iron,
cobalt and nickel.

10.4.1 Pauli paramagnetism

How can we derive an expression for the paramagnetic susceptibility in terms of the
behaviour of conduction electrons?
The itinerant, conduction band theory of paramagnetism was developed by Pauli [3].
This theory leads to a temperature-independent paramagnetic susceptibility.
Beginning from our earlier discussion of electron bands, consider, for example,
the parabolic free electron band shown in Fig. 10.3. For ease of visualization, we
represent the spin-up states on the left and the spin-down states on the right.
These we term the spin-up and spin-down half bands. Electrons will occupy the
lowest available energy states. In the absence of a field, the energy levels of
the spin-up and spin-down states are degenerate. Therefore, the two half-bands
are symmetric, occupancies of the two half-bands are equal, and the net magnetic
moment per atom is zero.
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H = 0 H > 0

N(E)

Spin moments
parallel to H

N(E)

Spin moments
antiparallel to H

N(E)
H0mH

Spin moments
parallel to H

N(E)

Spin moments
antiparallel to H

Figure 10.3 Occupation of electron energy levels in a free electron material in zero magnetic field
and under an applied magnetic field H.

When a field is applied the individual electronic moments acquire an additional
energy which depends on the scalar product of the magnetic moment m with the
field H

&E = -wm-H (10.23)

This energy lifts the degeneracy of the two half-bands, because the spin-up
bands move to lower energy while the spin-down bands move to higher energy.
As a result, the Fermi energy equalizes in the two half-bands and some electrons
switch from spin-down to spin-up. This leads to a net magnetic moment in the
spin-up direction. It is also clear from this diagram that only those electrons that
are close to the Fermi level will be able to switch direction.

10.4.2 Dependence of magnetization on field in Pauli paramagnetism
How does the susceptibility depend on the Fermi level, number of conduction
electrons and magnetic moment per electron?
From our earlier consideration of electron states at the Fermi level, only a fraction
T/TF of the conduction electrons can contribute to the magnetization. This again is
similar to the fraction of electrons that contribute to the heat capacity and electrical
conductivity. Therefore, according to the classical Curie law we should expect,

-u£=*
where M is the magnetization and N* is the number of electrons per unit volume
that can change the orientation of their spins. Since N* = NT/Tp (as described in
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Section 4.5.1) where N is the total number of conduction electrons per unit vol-
ume this leads to,

-¥(£)•
where m is the electronic magnetic moment and k¿T is the Boltzmann energy.

If we approach the problem in a more exact way, using quantum mechanics and
the band theory of electrons, the above result is modified slightly, but ultimately
we arrive at the same form of expression for M. The number density of electrons
parallel to the field N+ is,

N+ - lf(E)D(E + nomH) d£, (10.26)

N+ « lf(E)D(E) dE + /¿owHD(EF), (10.27)

and the number density antiparallel to the field N_ is, by a similar argument

N_ « |Y(E)D(E) dE - ¿¿0wHD(EF). (10.28)

The magnetization is therefore given by

M = w(N+-N_) (10.29)

- 2wVoHD(EF), (10.30)

where D(EF) is the density of states at the Fermi level. We can see that the result-
ing magnetization M is dependent not only on the applied field H, but also on the
density of states at the Fermi level D(EF). Using 2D(EF) = 3N/2£BTF [4 p. 415],

M = -^-mV)H, (10.31)
2£BTF

and therefore the Pauli free electron band theory of paramagnetism leads to the
following equation for the susceptibility:

M 3Nw2//o / i n * ™
X = H = ̂ k^' (1°'32)

This predicts a temperature-independent paramagnetic susceptibility which is
observed in a number of metals such as sodium, potassium and rubidium.

10.4.3 Electron band model of ferromagnetism
How can we generalize the above theory of magnetic susceptibility to describe
ferromagnetic materials?

The band theory of ferromagnetism is a simple extension of Pauli's band theory
of paramagnetism to ferromagnets with the inclusion of an exchange interaction
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(internal effective magnetic field) to align the electrons in a cooperative manner in
the absence of an external applied field. This causes a relative displacement of the
spin-up and spin-down half-bands known as the exchange splitting. It is qualita-
tively similar to that encountered under the action of an applied magnetic field in
Pauli paramagnetism, except that here the shift in energy is much larger and
occurs in the absence of an applied magnetic field. The net spontaneous magnet-
ization of a material is again determined by the difference in occupancy between
the spin-up and spin-down states.

In the 3d series elements, the outer electron bands of interest, which contribute
to the magnetic properties, are the 3d (total capacity 10 electrons) and the 4s
(total capacity 2 electrons). In iron, cobalt, and nickel, the 4s band is completely
filled with its complement of two electrons. Therefore, since this level must be
occupied with a spin-up and a spin-down it can have no contribution to the
magnetic moment per unit volume. The magnetic properties are therefore
determined by the partially filled 3d band.

Suppose that we have a material such as nickel consisting of atoms with 8
electrons each in a partially filled d band which has a capacity of 10 electrons.
Then if we consider 1029 atoms per m3 of this material, each atom could have up
to 10 of these 3d electrons in the band, and so there will be one electron band
consisting of 5 x 1029 energy levels with spin-up and an equal number of energy
levels with spin-down states (giving a total of 1030 possible electron states). There
will be 8 x 1029 electrons in this 3d band and these will occupy the lowest energy
states available. With no interactions between the electrons, they will be equally
distributed between the two subbands (3d| and 3d|) with no net magnetic
moment. So in this case we will again have a Pauli paramagnet.

In order to get the net imbalance of spins necessary for ferromagnetism it is
essential to invoke an exchange energy which displaces the energies of the spin-up
and spin-down half-bands even in the absence of an external field.

10.4.4 Exchange coupling
Why should there be a net magnetic moment in a partially piled electron band of a
ferromagnet?
In a partially filled energy band, it is possible to have an imbalance of spins. This is
caused by the presence of an exchange interaction between the electrons in the
conduction band which has the effect of aligning the spins parallel. This exchange
interaction is quantum mechanical in origin and has no classical analogue.
However, following Weiss, it is sometimes modelled as a classical mean field.
When this effective field is calculated it is found to be extremely large, being
equivalent to a magnetic field of about 109Am~1 (107Oe).

The exchange interaction has the effect of reducing the energy of parallel
alignment of spins even in the absence of an external field. Therefore the occu-
pancy of the spin-up state becomes energetically favoured over the spin-down
state in zero field. This results in a net magnetic moment.
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10.4.5 Spin-up and spin-down half-bands
Under what conditions can the exchange interaction lead to a net magnetic
moment?
The exchange energy can only alter the alignment of the moments if the reduction
in energy due to exchange is greater than the energy difference between the lowest
available spin-up state and the highest occupied spin-down state. In other words,
the system of spins will always configure itself to the lowest possible energy state,
taking the exchange energy into account. If the exchange energy is present but is
not large enough to alter the ground state in this way then no net magnetic
moment will arise.

where/ex is the exchange operator, and si and s2 are the spins on electrons. When
/ex > 0, then we have a tendency to parallel alignment which minimizes the
exchange energy and leads to ferromagnetism, but this can only occur if

|Eex| > AE, (10.34)

where AE is the energy difference between the lowest available spin-up state and
the highest occupied spin-down state. This condition simply ensures that any
change in orientation of electronic magnetic moment causes a reduction in the
total energy of the system.
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Figure 10.4 Occupation of discrete energy states in the conduction band of an itinerant electron
ferromagnet. On the left no exchange splitting results in equal occupancy of the spin-
up and spin-down half-bands. On the right the exchange splitting leads to an imbalance
of spins and a net magnetic moment per atom.

The energy resulting from the exchange interaction, Ecx , is usually represented
by the Heisenberg model [5] as,

Eex = -/exSl-S2, (10.33)
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10.4.6 Magnetic moment per atom
How is it possible to obtain magnetic moments per atom which are nonintegral
multiples of the Bohr magneton?
In the example of nickel given above, suppose that in unit volume 3 x 1028 out of
the 4 x 1029 (i.e. 3 out of 40) electrons from the spin-down half-band transfer to
the spin-up half-band because it is energetically favourable. This results in a net
excess of 6 x 1028 spins, or a net magnetic moment of 0.6 Bohr magnetons per
atom. We see from this how it becomes possible to explain fractional numbers of
Bohr magnetons per atom by the band theory of ferromagnetism.

The electrons fill the spin-up band first as shown in Fig. 10.5. When the half-
bands overlap electrons can be added to the spin-down half-band before the spin-
up half-band is filled. A complete separation of the energies of the spin-up and
spin-down bands would leave the entire spin-up half-band at a lower energy than
the spin-down half-band, and therefore all the electrons would fill the spin-up
half-band first.

Spins up Spins down Spins up Spins down

Figure 10.5 Occupation of electron energy levels in a ferromagnet. The two half-bands are split by the
exchange coupling. In (a) the exchange splitting does not completely separate the half-
bands, while in (b) the exchange splitting is large enough to cause complete separation.

If there were more states in the spin-up band than there were electrons available
to fill them, there would be no electrons in the spin-down band. Since in this
example each atom contributes one electron to the spin-up band, the net result
would be a magnetic moment of one Bohr magneton per atom. The actual electron
band structure for nickel is shown in Fig. 10.6. in which the exchange split states
are shown as pairs of 'parallel' half-bands. In this case the two half-bands overlap.

10.4.7 Magnetic moments in iron, cobalt and nickel
What are the typical distributions of the outer electrons in iron, nickel and cobalt?
Since it is the outer, unpaired, electrons that contribute to the magnetic properties
of the 3d series elements we will consider here the 3d and 4s outer electrons only.
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Figure 10.6 Electron band structure of ferromagnetic nickel after Wang and Callaway [6]. Reproduced with permission from C. S. Wang and J H
Callaway, Phys. Rev. B9, 1974, p. 4897.
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The magnetic moments per atom of these materials when in an aggregate (i.e. solid
form) are different from the isolated atoms. This is shown in Table 10.4. The
isolated atoms of course do not have 'continuous' electron bands; instead they
have discrete energy levels.

Table 10.4 Distribution of 3d and 4s electrons in iron, cobalt and nickel.

Material

Fe
Co
Ni

Number of 3d
electrons

6
7
8

Number of 4s
electrons

2
2
2

Net atomic
moment
(Bohr magnetons)

2.2
1.7
0.6

10.4.8 Rigid band model for transition metal alloys
What effect does alloying have on the magnetic moment per atom of the transition
metal alloys?
When considering the magnetic properties of the 3d transition metals and alloys,
the electronic structure of the conduction band can be approximated by assuming
that the electron bands are rigid even on addition of other 3d alloying elements.
Therefore by alloying with 3d elements which have more, or less, electrons than
the principal component of the alloy, the effect is simply to add, or subtract,
electrons from the existing band. Addition or subtraction of electrons simply
depends on whether the added element lies to the left or right of the principal
component element in the periodic table.

In the 3d transition metals and alloys this occurs without substantially altering
the energy levels of the bands. The net result is the variation of magnetic moment
per atom with alloy composition known as the Slater-Pauling curve [7,8]. This

Figure 10.7 The Slater-Pauling curve for 3d transition metals and alloys, showing the variation of
net atomic magnetic moment as a function of alloy composition.
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describes the magnetic moment in terms of the number of unpaired conduction
electrons per atom.

On increasing the number of electrons per atom from zero the magnetic moment
at first increases, as the spin-up band is filled, and then decreases, once the spin-
down band starts to fill faster than the spin-up band. The assumption of the rigid
band approximation which underlies the Slater-Pauling curve should not be taken
too literally, but it does seem to work as a first approximation.

10.5 THE LOCALIZED ELECTRON MODEL OF FERROMAGNETISM
Is there an alternative to the itinerant electron theory of magnetism?
In many cases the electronic magnetic moments can be considered to be localized
at the atomic or ionic sites. This is particularly appropriate for the lanthanide
series of elements in which the 4f 'magnetic' electrons are closely bound to the
atomic cores.

10.5.1 The Curie-Weiss law
How can we explain the difference between the Curie-Weiss law and the Curie law?
By introducing a mean field interaction, which is used merely to represent the
quantum mechanical exchange interaction in a simplified form, the Curie-Weiss
law can be derived from the Curie law. Suppose the interaction can be expressed
as a field He, which is proportional to M:

He - oM. (10.35)

The total magnetic field Hj0t experienced by an individual magnetic moment H
is then,

HTot = H + He = H + oM. (10.36)

The variation of magnetization M with total field HTot should still obey
Curie's law,

£-H£B-
but now the measured susceptibility is

X = ̂  (10.38)

= T^C (1039)

= f^7V (10'40)

where Tc = aN/x0m
2/3¿B is the Curie temperature. This means that the Curie

temperature is directly related to the strength of the exchange interaction as
measured by the mean field parameter a.
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10.5.2. Classical theory of ferromagnetism
How does the exchange interaction field explain the existence of ferromagnetism?
The mean field interaction, as introduced by Weiss, accounts for the observed
paramagnetic susceptibility of magnetic materials which undergo a transition to
ferromagnetism at the Curie point. This idea can be carried over into the ferro-
magnetic regime where it explains the existence of magnetic order. A brief outline
of the classical Weiss theory follows.

Suppose that any magnetic moment m\ experiences an interaction with any
other moment m} in the material. This can then be expressed as an effective
magnetic field experienced by the /th moment,

He. = aamj/Vj (10.41)

where a/; is the interaction between the /th and /th moments and V/ is the volume
occupied by m¡.

The total internal interaction field is then given by the sum of the individual
interaction fields over the whole material,

He=4za'>w" (io-42>
;

where V is the volume occupied by the material. This makes it energetically
favourable for the electron magnetic moments to align parallel when a// > 0
leading to ferromagnetism.

10.5.3 The mean field approximation
What form does the exchange field take if all interactions are assumed equal?
If we assume that the interactions between all moments are identical (i.e. if we
make the mean field approximation) with a// = a for all pairs /, /, then the above
summation is simplified to,

He^^mw, (10.43)
/

=^Ew" <10-44)
/

and if Ms is the spontaneous magnetization throughout the volume under con-
sideration (usually a single domain), then

He = a(Ms - m,/V) (10.45)

and since ra//V < Ms, we can replace Ms - m¡/V with Ms

He ~ oMs, (10.46)

which is the form of interaction envisaged in a ferromagnetic material in the
original theory by Weiss.
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The mean field model of ferromagnetism, which provided the first systematic
explanation of the phenomenon, has been updated to explain the wider range of
phenomena observed since its introduction nearly a century ago. The mean field
approach has been applied on the nanoscale [9] to describe such effects as local
magnetic fluctuations. The result of this extension of the model now gives results
for magnetic susceptibility that agree well with observations close to the Curie
temperature. The essential idea in this new development is to overcome the
limitations of the traditional 'homogeneous' treatment of the mean field model by
considering finite clusters of magnetic moments without restrictions on the cluster
sizes. This has enabled a unified description of the paramagnetic behaviour of
materials to be developed based on a familiar concept, the mean field model [10].

10.5.4 Magnetic order, spontaneous magnetization and domains
If the magnetic moments are all aligned parallel in ferromagnetism, then how can a
ferromagnet ever be demagnetized?
We have discussed the fundamental difference between ferromagnets and para-
magnets which is the existence of long-range order in ferromagnets. This means
that large numbers of magnetic moments are aligned parallel. This is true of iron,
cobalt, and nickel at room temperature.

This leads to an apparent contradiction. Most specimens of iron, cobalt, and
nickel do not have a bulk magnetization of the size expected on this basis unless
they have been deliberately 'magnetized', that is exposed to a strong external
magnetic field. The contradiction is resolved through the existence of magnetic
domains which are microscopic volumes in which all magnetic moments are
aligned parallel. The direction of this magnetization is different from domain to
domain, leading to a low value of bulk magnetization.

We therefore need to distinguish between the macroscopic (or bulk) magnetiza-
tion which occurs after a ferromagnet has been subjected to a magnetic field, and
the microscopic (or spontaneous) magnetization which is the magnetization within
a domain. We shall denote the bulk magnetization M and the saturation
magnetization MQ. The spontaneous magnetization Ms is close in value to MO and
as the temperature T is reduced to absolute zero, MS(T) approaches M0.

Whereas M can be affected by the presence of an external field, Ms is largely
unaffected and M0 is completely unaffected. The change in magnetization M caused
by an external magnetic field arises from reorientation of domain magnetizations,
causing the individual domain magnetic moments to line up throughout the
material. The description of the dependence of magnetization M on magnetic field
H is an important technical problem with no completely general solution.

10.6 APPLICATIONS OF MAGNETIC MATERIALS
What uses do magnetic materials find?
Magnetic materials find their main applications in a variety of technological areas.
Soft magnetic materials [11,12], which have high permeability and low coercivity,
are used in electromagnets and inductor cores in which the primary objective is to
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generate as much magnetic induction B as possible under the action of a magnetic
field H. Hard magnetic materials [13], which have low permeability but high
coercivity and remanence, are used in permanent magnet applications in which the
materials are used to generate a magnetic induction without a conventional
electrical power supply.

Magnetic particles and magnetic thin films are used in magnetic recording of
information in the form of analogue signals or digital data. The newly emerging
field of magnetoelectronics [14], in which magnetic and electronic functions are
combined in a single device, is one in which there has been a rapid surge of
interest. This interest arises because of the possibilities of dramatic improvements
in magnetic data storage densities using these types of materials, both for long-
term memory such as disk drives where these materials are used in read heads [15],
and for on-line random access memory (MRAM) [16,17].
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CHAPTER 10 MAGNETIC PROPERTIES OF MATERIALS

EXERCISES
Exercise 10.1 Strength of the exchange field in iron
Iron has a Curie temperature of 1043K and a magnetic moment of 2.2 Bohr
magnetons per ion. Find the strength of its internal exchange field.

Exercise 10.2 Comparison of the magnetic moments on atoms in bulk form and
in isolation
Compare the known saturation magnetizations of iron, cobalt and nickel in bulk
with the known magnetic moment of the free atoms or ions and comment on the
result. Calculate the occupancy of the 3d and 4s bands in iron from these results.

Exercise 10.3 Spontaneous magnetization and the exchange field
Assuming that the Heisenberg exchange interaction can be introduced simply as
an effective field that is proportional to the spontaneous magnetization within a
domain, derive an expression for the magnetization of a domain as a function of
magnetic field H, magnetic moment per atom m and temperature T starting from
the classical Langevin equation for paramagnetism.

If m = 2 x 10-23 Am2, N - 9 x 1028 m and T = 300K, find the value of the
mean field parameter which is needed in order to cause spontaneous magnetization.

Exercise 10.4 Saturation magnetization and atomic magnetic moments
Calculate the expected saturation magnetization Ms in iron in Am"1 given that as
described by the band (or collective electron) theory of magnetism the magnetic
moment per atom in bulk iron is 2.2 Bohr magneton. The density of iron is
7.9 x 103 kgm"3, and its relative atomic mass is 56.

A toroid of iron has an internal diameter of 0.01m and external diameter of
0.02 m. The material of the toroid has a square cross-section of 0.005 m. Calculate
the total magnetic flux in the toroid when it is magnetized circumferentially by a
field of 1000 Am"1 if the magnetization is then at 50% of saturation.

Exercise 10.5 Saturation magnetization and electron band structure
A ferromagnetic material has a density of states at the Fermi level of 1.9 x 1049

per Joule per cubic metre. If the exchange coupling between the electrons is
5 x 10~21J calculate the expected saturation magnetization (magnetic moment
per unit volume) based on the itinerant or band electron theory of ferromagnet-
ism. If the number of atoms per unit volume is 8.5 x 1028 per cubic metre then
calculate the net magnetic moment per atom in Bohr magnetons. (NB Each
electron has a net magnetic moment of one Bohr magneton or 9.27 x 10~24 Am2.)

Exercise 10.6 Hysteresis and energy dissipation
The hysteresis curve in Fig. 10.8 is of a material which has a coercivity of 50 Am"1

and a remanence of 0.5 T. Estimate the hysteresis loss per cubic metre of material
that is dissipated when the material is driven around one complete hysteresis cycle.
If this material is used in a toroidal inductor core of mean circumference 0.05 m,
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with a cross-sectional area of 0.25 x 10~4m2, calculate the hysteresis power loss
at a frequency of 60 Hz. Is this the total power loss in the inductor at this
frequency? What materials properties would you take into account in selecting a
material as an inductor core?

Figure 10.8 Hysteresis loop of magnetic material for Exercise 10.6.
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11 MICROELECTRONICS - SEMICONDUCTOR
TECHNOLOGY

OBJECTIVE

In this chapter we look at materials for microelectronics applications. Micro-
electronics is a vitally important and wide-ranging group of related fields that
includes semiconductor materials technology. In a book such as this it is only
possible to skim the surface of such a diverse subject. Therefore, the limited
objective here is to discuss some of the considerations which go into selecting
materials for microelectronics applications. This is based on the specific elec-
tronic properties of the materials which have been discussed in previous
chapters. We show here how the relative advantages of silicon, germanium and
gallium arsenide need to be considered for specific applications.

11.1 USE OF MATERIALS FOR SPECIFIC ELECTRONIC FUNCTIONS

What is 'microelectronics'?
The subject of microelectronics is concerned mainly with semiconductors [1] and
semiconductor devices [2]. This is an extremely diverse area of technology which
extends from solid-state physics (understanding the electronic properties), through
materials science (fabrication of microelectronic circuits), to electrical engineering
(performance of components and devices) and computer engineering (integration
of large numbers of devices and their application in digital systems). The entire field
of microelectronics can be traced back to the development of the pn junction by
Ohl [3] and the bipolar junction transistor by Bardeen, Brattain and Shockley [4],
By the mid 1980s the electronics industry had become the largest single manufac-
turing industry in the world.

Semiconductors are used to produce the key components in the majority of
electronic systems including communications, data processing, control and con-
sumer electronics equipment. Of the two main classes of semiconducting materials,
intrinsic and extrinsic, it is the extrinsic semiconductors which are of greater tech-
nological importance here. The reason for this is that the electrical conductivity
can be carefully controlled in extrinsic semiconductors using dopants, whereas in
intrinsic semiconductors such fine control is difficult if not impossible to achieve.

11.1.1 Control of electronic properties of semiconductors
What is a dopant?
A dopant is an impurity element which is deliberately added to the semiconductor
to change its conductivity. Dopants can provide extra electrons (e.g. phosphorus
or arsenic in silicon) to form n-type semiconductors, or they can provide extra
holes (e.g. gallium or aluminium in silicon) which are positive charge carriers to
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Figure I I.I Conductivity ranges of semiconductors compared with insulators and conductors.

form p-type semiconductors. Doping concentrations are typically a few parts in
106 and this makes it possible to fabricate devices with desired electrical prop-
erties. The range of possible conductivities of semiconductors is shown in Fig. 11.1.

11.2 SEMICONDUCTOR MATERIALS
Which are the main semiconductor materials currently available?
The first semiconductor material in widespread use was germanium but this
exhibits relatively high leakage currents at moderately elevated temperatures, and
it was superseded by silicon in the 1960s. Silicon replaced germanium for almost all
applications because of its lower leakage current, resulting from its wider band gap,
and the fact that high-quality silicon dioxide can be easily produced to form a good
insulating layer on the material where necessary. The silicon dioxide layer strongly
adheres to the surface of the silicon and can be used as a mask. In addition, silicon is
more abundant than germanium and therefore cheaper. The electrical properties of
silicon are also fairly easy to control. The variation of resistivity of silicon with
impurity concentration is shown in Fig. 11.2.

The primary material of interest in this chapter is therefore silicon, since
most of the semiconductor industry is built around this material and its oxides.
It constitutes a large fraction of all semiconductor hardware sold worldwide at
present. For use in electronic devices 'electronics grade' silicon is produced. These
are single crystals of silicon obtained by slowly withdrawing seed crystals from
molten silicon.
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Figure 11.2 Variation of the resistivity of silicon with impurity concentration. Reproduced with
permission from N. Braithwaite and G. Weaver, Electronic Materials, published by
Butterworths, 1990.

11.2.1 Alloy semiconductors
What makes gallium arsenide and related materials so special?
Gallium arsenide and other direct band gap semiconductors are also of interest [5].
Together with other III-V compound semiconductors it is has had enormous
impact on the optoelectronics and computer industry because of the possibility of
fabricating fast electronic devices from these materials, and because of the ability
to support optical functions. The III-V compounds are used in laser diodes, solar
cells and light emitting diodes which are discussed in the next chapter. Gallium
arsenide and the other III-V semiconductors are the subject of intensive research
[6] because of this. Continuing interest stems from the following unusual combi-
nation of properties:

(i) High band gap energy which can be engineered (i.e. altered) by combining it
with other materials (e.g. InP) to allow optical transitions over a range of
energies.

(ii) Direct band gap, making it suitable for optoelectronic applications.
(iii) High electron mobility leading to very fast operation of GaAs devices.

11.2.2 The III-V semiconducting compounds
How can the band gap of these semiconductors be controlled?
One interesting property of these compounds is that they can be mixed together to
form solid solutions. For example, aluminium or indium can be substituted for
some or all of the gallium; or phosphorus or antimony can be substituted for some
or all of the arsenic. This can be used to make subtle changes in the electrical and
optical properties of the material. All have the same crystal structure and similar
values of lattice constant which is advantageous for fine control of the electronic
properties. Composition of the III-V compounds can be carefully controlled by
modern materials processing techniques (e.g. growth by molecular beam epitaxy)
that allows the band gap to be selected for particular applications. This can result,
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for example, in materials which emit light over a range of wavelengths close to the
optical range which can be used for light emitting diodes of various colours, or for
semiconductor lasers.

These materials provide an important avenue of investigation for the develop-
ment of new optoelectronic devices. The main problem is that the III-V compounds
are much more difficult to process than silicon and the raw materials are more
expensive too. This leads to a higher cost of devices. However, the possibility of
using them for optical applications and the higher electron mobilities, which lead
to fast electronic devices, can outweigh the extra cost.

11.3 TYPICAL SEMICONDUCTOR DEVICES
What kinds of devices are fabricated on wafers of semiconductor and how do
these work?
We begin by developing an understanding of the electronic processes in some very
simple cases. Then we will go on to discuss applications which can be presented
without further detailed reference to band structures. Most microprocessor chips
contain devices based on only 3 or 4 simple structures. The simple devices that we
shall consider in order to develop this understanding are the pn junction and the
transistor. Our first objective is merely to describe how these work, using as a basis
our understanding of the behaviour of electrons in materials which has been
developed in earlier chapters. Only then will we be concerned with their possible
applications.

11.3.1 The pn junction
What does the electron band structure look like in the vicinity of a semiconductor
junction between p- and n-type material?
The pn junction, which was first demonstrated by Ohl [3], is one of a small
number of simple electronic devices that are fabricated on semiconductor chips
and which form the basis for the modern microelectronics industry. The other
simple structures include the metal/semiconductor junction, the transistor and the
heterojunction. These pn junctions are found literally everywhere in microelec-
tronic devices.

Junctions between semiconducting materials are crucial for applications of these
materials because in this way very diverse electronic properties can be produced.
The electronic behaviour of the pn junction, which consists of two semiconductors
with different conduction mechanisms and different Fermi levels joined together,
can lead to some quite interesting and useful results. These provide a simple basis
for understanding more complex devices. The schematic electron band structure is
shown in Fig. 11.3.

As a result of differences in the Fermi levels on each side of the junction, elec-
trons flow from the n-type material to the p-type material. Consequently the n-type
material becomes positively charged and the p-type becomes negatively charged.
Eventually, the Fermi levels become equalized in the two materials. The region
at the interface, which becomes depleted of mobile charge carriers as the mobile
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Conduction Band

Fermi Level

Valence Band

P - type N - type

Figure 11.3 Band structure diagram for a pn junction.

electrons flow into the p-type material and the mobile holes flow into the n-type
material, is known as the depletion layer, also sometimes called the space charge
region. This is shown in Fig. 11.4. The pn junction can be forward or reverse
biased by connecting a voltage source to the two pieces of semiconductor as
shown in Fig. 11.5.

11.3.2 Performance characteristics of a pn junction
When subjected to a voltage how does the current through the pn junction change?
The current-voltage characteristics of a pn junction are shown in Fig. 11.6. It can
be seen that the junction acts like a diode, in which the current rises steeply with
applied voltage in one direction (forward bias) but the device remains nonconduct-
ing in the other direction (reverse bias). Any electrons trying to move from n-type

p-type depletion region n-type

(a) majority carrier density

(b) net space charge density

Figure 11.4 Electron and hole densities on either side of a pn junction.
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Figure 11.5 Connection of a pn junction to a dc power supply which results in biasing of the junction.

to p-type encounter a potential barrier as shown in Fig. 11.5, while those electrons
trying to move from p-type to n-type pass easily down the potential ramp.

It should be noted, however, that the current-voltage characteristics of a pn
junction are strongly temperature dependent. By raising the temperature from
20°C to 50°C the reverse bias current can be raised by more than an order of
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Current I

Figure 11.6 Current-voltage characteristics of a pn junction.

magnitude, as a result of thermal stimulation of more electrons across the band
gap, resulting in a higher charge carrier density in the conduction band.

11.3.3 Bipolar junction transisitors (BJTs)
How does a transistor work?
Transistors are solid-state devices for amplifying and controlling electrical signals
(voltages and currents). The bipolar junction transistor (BJT), which was invented
at Bell Laboratories in 1947, is the prototype of many important electronic devices
and we shall briefly discuss its operation. This consists of two semiconductor
junctions, with one semiconductor region common to both, Fig. 11.7. There are
two possible configurations, 'n-p-n' and 'p-n-p'. The first transistors were made of
germanium because at the time it could be produced in pure form more easily than
other semiconducting materials, such as silicon. The region in the middle of this
semiconducting 'sandwich' is the base. The other two are known as the emitter
and collector. All three have direct electrical connections in a circuit.

Emitter

I Base I Base

Symbol Symbol

Figure 11.7 Configurations for a transistor. Both involve sandwiching one type of semiconductor
between pieces of another type of semiconductor.
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11.3.4 Band structures of bipolar junction transistors
What are the special characteristics of the electron band energy levels in the vicinity
of the transistor junctions?
In a pnp transistor the valence and conduction bands of the centre or n-type
material are lower than for the p-type material on the outside. This is shown
in Fig. 11.8.

Energy

Conduction Band

Fermi level
Valence Band

p n p

Figure 11.8 Relative energies of conduction and valence bands of a pnp transistor.

In an npn transistor the situation is just the opposite. In this case the energy
levels of the centre p-type region are higher than those of the outer n-type region
as shown in Fig. 11.9.

Energy

Conduction Band •
Fermi level

Valence Band

Figure 11.9 Relative energies of conduction and valence bands of an npn transistor.
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11.3.5 Effects of biasing the npn transistor
What happens to the electron band structure of an npn transistor when subjected to
a bias voltage?
As can be seen in the case of the pn junction the effects of biasing the junction can
radically affect the current-voltage characteristics. The same is true for a bipolar
junction transistor. The electron band structure of a biased transistor is shown
in Fig. 11.10.

Emitter Base Collector

Forward bias Reverse bias
n p n

Figure 11.10 Electron band structure of biased npn transistor.

11.3.6 Typical bipolar junction transistor characteristics
How can a transistor be controlled by the bias voltage so that it acts as an
amplifier?
A transistor can be used to amplify signal voltages. We will consider an npn transis-
tor as an example. The principles of operation remain the same for a pnp transistor.
The emitter-base is forward biased while the base-collector is reverse biased.
Electrons climb the barrier between emitter and base being pushed up the potential
by the applied voltage, as shown in Fig. 11.11. They then rush down the potential
ramp from base to collector, as shown in Fig. 11.12 producing a high current.

Of the three principal configurations of a BJT transistor we will consider only
the 'common base' and 'common emitter' arrangements. In the common base
configuration the input voltage is Vbc between the base and the emitter, and the
output voltage is Vcb between collector and base. The current gain is then simply
the change in collector current A/c for a given change in emitter current A/e

Aic
a = S£- (1L1)
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base

Figure I I.I / Electrons being pushed up the potential ramp from the emitter to the base of an
npn transistor.

Conduction Band

Band Gap

Valence Band

Base

Collector

Figure 11.12 Electrons descending the potential ramp from base to collector in an npn transistor.

Since the collector and emitter currents are virtually the same in these devices as
explained below, this means that the gain a is close to unity.

In the common emitter configuration the input voltage Vbe is between the base
and emitter and the output voltage Vce is between the collector and emitter. In this
case the current gain is the change in collector current A/c for a given change in
base current A/^:

^t" (1L2)

This gain is usually much larger than a. By conservation of charge it follows that

lb + 'c + *e = 0, (11.3)

and therefore

Aib =-(Aic + Aie), (11.4)
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hence

Aib = -A/c^——, (11.5)
Oí

leading to

n A/c a
^STo^)' (11-6)

which gives the relationship between the common base and common emitter
gains. Since a is close to unity this means that fi is very large by comparison, being
typically in the range 10-1000. Therefore a small change in the base current can
lead to a large change in the collector current.

The explanation of the behaviour of the device is as follows. An increase in the
base voltage reduces the potential barrier between emitter and base regions
allowing more electrons to pass into the base. The base region itself is very thin, so
that a high proportion of the electrons entering from the emitter pass into the col-
lector without recombining with holes in the base. This gives a collector current
which is comparable to the emitter current. A large increase in collector cur-
rent can therefore result from a small increase in base current.

The base current is typically of the order of microamps, while the emitter and
collector currents are typically of the order of milliamps. The voltage-current
characteristics of a common emitter configuration of an npn transistor are shown
in Fig. 11.13.

Current L (mA)c

15

Voltage VEC (V)

Figure 11.13 Current-voltage characteristics for a BJT.

11.3.7 Charge carrier lifetimes and operational efficiency
How are the performances of junction devices such as pn junctions and transistors
affected by the lifetimes of charge carriers?
In devices such as pn junctions and transistors the charge carrier lifetime, and
hence the diffusion length, is an important factor in determining operational
efficiency. For example, when minority charge carriers are injected into these
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devices they can contribute to the minority charge carrier concentration only until
they recombine in an electron/hole pair. This means that longer charge carrier
lifetime results in more charge carriers reaching the depletion (space charge)
region and consequently in higher operational efficiencies of such devices.

11.3.8 Field effect transistors (FETs)
What other types of transistor can be produced*
A few years after the invention of the bipolar junction transistor the junction field
effect transistor was developed. This is essentially a voltage-controlled resistor.
The common feature of field effect transistors is that they employ predominantly
one type of carrier. The junction field effect transistor (JFET), which we will
consider as an example, is such a unipolar device. This distinguishes it from the
BJT, which is a bipolar device wherein both types of carriers are employed.

The JFET consists of either an n-channel or a p-channel as shown in Fig. 11.14.
The 'source' and 'drain' are on either side of the 'channel' through which the cur-
rent flows. The 'gate' is a piece of p-type (or n-type) depending on whether the
channel is n-type (or p-type). The voltage applied to the gate controls the flow of
charge carriers and so controls the resistance of the device. The variation of the
drain current ij with the voltage across drain and source V¿s is nonlinear. When a
positive voltage is applied to the drain relative to the source electrons flow from

Source

Gate

- Vds +

n channel JFET

Drain
channel

Source

TGate

Drain
channel

~ Vsd +

p channel JFET

Figure 11.14 Schematic for JFETs.
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Figure 11.15 Current-voltage characteristics for a JFET.

source to drain. At low values of Vjs the drain current i¿ increases rapidly with
voltage but then saturates as V& is increased further. The value of i¿ at saturation is
controlled by voltage across the gate and source Vgs as shown in Fig. 11.15. The
reason for this is that the voltage on the gate can be used to vary the width of the
depletion layer in the channel region. At zero gate voltage the drain current is
a maximum. As the gate voltage is made more negative it increases the width of
the depletion layer which results in the conduction channel becoming narrower.
On the other hand if the gate voltage is made more positive this provides an
alternative path for the charge carriers which reduces the flow of electrons from
source to drain.

The field effect transistors comprise a whole family of related devices which
include, in addition to the JFET, the metal semiconductor field effect transistor
(MESFET) and the metal oxide semiconductor field effect transistor (MOSFET).

11.3.9 Metallic spin transistors
Is it possible to make a transistor out of a metal*
Over the entire lifetime of the microelectronics industry, semiconductors have
been used for making transistors. However, it has been suggested [7] that magnetic
metals can be used to construct a transistor. The advantage of such a device is that
the carrier densities in metals are typically 1028-1029m~3, whereas in doped
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semiconductors, they are 1024-1025 m~3. So the devices made from metals could
be about ten thousand times smaller than semiconductor devices for the same
number of conduction electrons. The magnetic metals can sustain two separate
populations of charge carriers distinguished by the orientations of their spins
(up and down). These metallic transistors could be used for memory (nonvolatile
RAM), amplifiers and logic circuits.

11.4 MICROELECTRONIC SEMICONDUCTOR DEVICES
How many such simple devices can be fabricated on a single silicon chip?
We have seen that it is possible to produce devices with interesting and diverse
electrical properties by altering the electronic structure of materials. Three simple
examples were the pn junction, the BJT and the FET, but these are only the simp-
lest of devices that can be fabricated from semiconductor materials such as silicon.
Large numbers of these devices can be produced on a single wafer of silicon. This
process is known as very large scale integration (VLSI) [8]. Fabrication of even
larger units, for example complete fabrication of all devices on a single silicon
wafer, is known as wafer scale integration (WSI) [9], The numbers of transistors
fabricated on a single silicon chip have grown exponentially since the first inte-
grated circuits were produced. Semiconductor fabrication technology has reached
100 million (108) transistors per chip as shown in Fig. 11.16. Furthermore, the
number density of components on dynamic RAM chips has always been higher
than on microprocessors and this has reached one billion (109) transistors per
DRAM chip.

11.4.1 Integrated circuits
What is an 'integrated' circuit?
An integrated circuit is an assembly of electrical components that is fabricated as a
single unit on a substrate of semiconducting material which is usually silicon. The
1C consists of an assembly of electrically isolated circuit elements, both passive
(capacitors and resistors) and active (transistors and diodes). These are fabricated
together with the necessary electrical connections on a common substrate, which
is usually silicon. These circuit elements are arranged in such a way that the whole
integrated circuit performs an electrical circuit function. The integrated circuit
was invented by Kilby at Texas Instruments in 1958 and independently by Hoerni
and Noyce of Fairchild Semiconductor Corporation at about the same time. The
first integrated circuits built in 1958 contained 10 components fabricated on a
single chip of semiconductor. Modern ICs contain about 108 transistors, are
typically 5 mm square and are fabricated simultaneously on silicon wafers 100 mm
in diameter which are subsequently separated into individual chips.

11.4.2 Microprocessors
What is a microprocessor?
Large-scale integration was developed during the 1970s and this enabled thous-
ands of transistors to be packed on a silicon chip that is 3-4 mm square. This gave
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Figure 11.16 Device densities on microprocessors and DRAMs, have followed a revised Moore's
Law, which stipulates the doubling in circuit complexity every 18 months. After
R. R. Schaller [29]. © 1997 IEEE.
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rise to the microprocessor, which is an advanced integrated circuit that, in addition
to the conventional circuit functions, contains the arithmetic, logic and control
circuitry necessary to carry out the functions of a central processing unit (CPU) of a
digital computer. The microprocessor was invented by Intel Corporation in 1971.
The first microprocessor had about 1000 transistors. Very-large-scale integration
(VLSI) was developed in the 1980s. This further increased the density of devices
on the chip. In the early 1990s microprocessors were fabricated with more than
3 million transistors on a single microprocessor. By the late 1990s the number had
grown to 10 million transistors on the 80786 microprocessor, and by the year
2001 industry was fabricating 100 million transistors on a chip.

11.4.3 Fabrication procedure
How are the devices actually made out of a single block of silicon?
The fabrication process for producing devices on silicon wafers is quite
complicated and involves a large number of steps. The complete process takes
several days to complete. However if we simplify the process into its principal
stages it proceeds as follows:

(i) Production of single crystal silicon wafer.
(ii) Doping of material, either by diffusion of impurities or by ion implantation,

followed by diffusion,
(iii) Growth of epitaxial layers on surface of wafer, such as lightly doped silicon

on a heavily doped substrate. This is the stage at which the material is
supplied by the wafer manufacturer,

(iv) Ion implantation into the surface to create regions with different electrical
properties such as n-type and p-type regions,

(v) Subsequent heat treatments to allow implanted dopants to diffuse farther
into the material to establish the desired well structure,

(vi) A thin 0.03-um layer (gate oxide) of silicon dioxide is produced over the
surface, followed by a thin 0.17-um nitride layer,

(vii) Lithography is the technique that is used to define which areas on the surface
are to be etched and which are to be left with the nitride layer. The nitride
areas are for sources, drains and channels (electrically active areas).

(viii) A thicker oxide layer 0.6 Jim (field oxide) is then deposited on areas without
the nitride coating, since these areas are to be covered by insulator,

(ix) The nitride layer is removed by the use of orthophosphoric acid leaving only
the thin 'gate oxide' layer in the chosen regions,

(x) The silicon/silicon dioxide interface contains fixed positive charges in the
oxide. These are compensated by negative charges just inside the silicon.
Since these positive charges are desirable, ion implantation of acceptor
atoms (for example BF) in the silicon is used to ensure that it is easier to get
mobile positive charges into the oxide layer [10].

(xi) Polycrystalline silicon gates are aligned at the active sites. The silicon is
heavily doped to increase its conductivity. These gates are deposited over the
thin gate oxide regions. This stage is known as gate deposition.
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(xii) Photoresist layers are then placed over the surface in two steps. First, the
surface, except for the p wells with their heavily doped polysilicon gates, is
covered. Then donor atoms such as arsenic are ion implanted deep enough
to penetrate the areas covered only by the thin oxide layers in the p wells.
Next, the surface, except for the n wells with their heavily doped polysili-
con gates, is covered again with photoresist. Then acceptor atoms such as
boron are ion implanted into the areas covered only by the thin oxide layer
in the n wells.

(xiii) The photoresist layer is removed using sulphuric acid and hydrogen per-
oxide. This leaves an uneven surface with a top layer of about 1 |im of silicon
dioxide with some contact holes in the surface for electrical connections.

(xiv) The planarization stage involves the use of an organic silicate in alcohol
solution which is cured at 800°C to leave a fairly smooth glassy surface
ready for attachment of metal electrical contacts.

Figure 11.17 Section through a MOSFET transistor at various stages of fabrication.
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(xv) Once the surface has been smoothed metal layers can adhere to it and these
layers are laid down to form the electrical connections. This process is called
metallization. The deposition involves sputtering of a metallic surface layer
using conventional lithography to obtain the required pattern. The rate of
deposition is typically 0.01 |im per second. The metal layer usually consists
of a 0.15-um titanium-tungsten layer to prevent aluminium migrating into
the silicon, and on top of this 0.5-um layer of Al-4°/oCu.

Some of the principal stages in the fabrication process are shown in Fig. 11.17.

11.4.4 Lithography, critical dimensions and feature sizes
How large are the devices that are fabricated on semiconductor 'chips'?
Lithography is the process by which the patterns for chip designs are produced on
semiconductor wafers. Optical lithography is the standard technique at present
but may soon be reaching its limit as the sizes of devices that need to be patterned
continues to be reduced. Lithography requires an exposure tool, a mask tech-
nology and a resist technology. The wafer is coated with a layer of photoresist.
An image of the mask, usually reduced to one-quarter or one-fifth of its original
size, is projected onto the wafer. Exposure to light changes the solubility of the
photoresist layer so that the desired pattern emerges when it is developed. The
remaining photoresist layer enables selective etching or selective ion implantation
to be carried out.

The wavelength of the light used in photolithography must be typically no
greater than the critical dimensions. There are some techniques that overcome this
limitation such as resolution enhancement technologies ('RET'). These can
produce features at roughly half the wavelength of the light by using phase shifting
masks. However, even in these cases the wavelength can be no greater than twice
the critical dimension. As the technology develops over time the feature size
continues to be reduced and therefore the wavelength of the light used in the
patterning must also be reduced. The 'critical dimension' is the size of the smallest
linewidth that can be patterned onto a semiconductor wafer. This is currently
about 0.15 um but will reach 0.07 um in the next decade as shown in Fig. 11.18
[11]. To continue to reduce this critical dimension other advances in technology
are needed.

With features on the order of 0.15um today 'light' of wavelength 150 nm is
used for the patterning. Looking further ahead, when the features have critical
dimensions of less than 0.07 um we will need to use extreme ultraviolet (EUV)
lithography with electromagnetic radiation of wavelength 70 nm (photon energies
of 17 eV) for the patterning. At critical dimensions of 0.07 um it should be
possible to fabricate ICs with about 500 million transistors per chip. According to
Geppert [11] there are no fundamental barriers lying between the current
technology and such device densities. At smaller critical dimensions, or higher
device densities, there are problems in continuing to use 'optical' lithography even
with EUV. This dictates that other lithographic methods will need to be used.
A candidate for this is electron beam lithography.
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Figure 11.18 The critical dimensions of transistors will decrease from 0.15 (¿m today to 0.07 jim in
2010. Over the same time span, the performance of general-purpose microproces-
sors will rise from 100 million operations per second to more than 10 billion [II].

The reduction in feature size also results in a reduction of the power require-
ments and threshold voltage for operation, as shown in Fig. 11.19 [12]. At the 100
million transistors per chip level, the threshold voltage for operation of the devices
is 0.2V and the operating temperature range is up to 100°C. Of course, it is
known that the chips operate better at lower temperatures. At lower temperatures,
the electron and hole mobilities are increased and the resistances of the metallic
interconnects are reduced, while the threshold voltage for operation decreases.
Nevertheless, the incorporation of cooling systems into the microelectronics
seems to be impractical at present.

A typical CMOS device of the 0.1 Jim lithography generation should look like
the diagram in Fig. 11.20. The channel length (which is the distance between the
source and drain of the transistor) should have a minimum size of 0.05 um and an
unloaded circuit delay of lOps. The gate oxide thickness is typically in the range
of ¿- to JQ of the 'channel length', which means that the gate oxides will be 1-2 nm
in thickness in these devices. This will be a layer that is only a few atoms thick and
quantum-tunnelling effects will be significant [13]. This means that the traditional
scaling of device sizes, which assumes classical continuum physics, will break
down at these dimensions and this will lead to unacceptable device performance
[14]. Furthermore, dynamic random access memory chips (DRAM) have even
more stringent requirements on leakage currents than logic chips and therefore the
insulating gate oxide layers need to be thicker in DRAM.
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MOSFET channel length, jam

Figure 11.19 As 1C manufacturing techniques improve, CMOS devices with shorter channel
lengths will switch faster and use less power. Lower power-supply and threshold
voltages (Vdd and Vt) and thinner gate oxides (tox) will accompany the shrinking
channel lengths. Transistors built between the years 2003 and 2006 will have a mini-
mum channel length of 0.05 |im, a power-supply voltage of 1.2V, and a threshold
voltage near 0.25V [12].

nMOSFET pMOSFET

Figure 11.20 A CMOS device in the 0.10-0.13-mm lithography generation will feature: shallow
trench isolation, 1.5-2.0-nm insulating gate oxide, n+-doped and p+-doped polysili-
con gates for nMOSFET and pMOSFET, respectively, 30-50-nm-deep source-drain
extension, and self-aligned suicide for the contacts [13].
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11.5 FUTURE IMPROVEMENTS IN SEMICONDUCTORS
What are the directions in which semiconductors are likely to develop in the
near future?
The present-day microelectronics industry is built on the fabrication of micro-
scopic electrical circuits engraved on silicon. These circuits are then sealed,
packaged to protect them, and electrical connections to the outside world are
added. A typical microelectronic circuit, the proverbial 'computer chip', appears
as shown in Fig. 11.21. One direction for further development is in the refinement
of techniques for fabrication, particularly in view of the sensitivity of the
electronic properties of semiconductors to impurities.

The number of components on a logic chip is a simple function of the feature
size. Figure 11.16 shows the progress in reducing feature sizes, and increasing
the number of components, from 1970 to the present with extrapolations to the
future. It also shows the dates at which various ICs became available and the num-
bers of transistors incorporated. The plot shown in this figure is an example of
Moore's law, which, as originally stated in 1962, predicted that the number
of transistors on an 1C chip doubled every three years.

With present device sizes, the individual transistors on an 1C are switched by the
action of about 1000 electrons being added or removed. By extrapolation of
the current rate of progress in reducing feature sizes the switching will be achieved
by the addition or removal of only 8 electrons by 2010, and by only one electron
by 2020 [15].

The operational speed of logic chips is measured in the number of binary
operations per second (bops). This is the product of the number of devices (gates)
and the clock frequency. In the case of the Teramac computer developed recently
by Hewlett Packard Laboratories, there are 106 gates operating at 1MHz giving
1012bops. It is interesting to ask how much electrical energy is involved in this

Protective
molding compound

Bond wires

Die

Die-support
paddle

Spot plate

Cut away section External end view

Figure 11.21 Cut-away section through an integrated circuit showing the silicon chip together
with the necessary circuit connections. The whole is encapsulated in a protective
plastic housing.
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very large number of operations. Landauer has shown [16] that it is possible in
principle to perform 3.5 x 1020bit operations per second with a power of 1W.
This indicates that there is still plenty of spare capacity left with CMOS
technology even at the operational speed of the Teramac. Another direction is the
use of amorphous silicon [17] instead of the present single crystal silicon. This has
distinct advantages in terms of reduced cost. The main application area for
amorphous silicon is in low-cost, high-efficiency photovoltaic cells.

The need for newer, faster semiconductors seems to be continuing presently
without relent. Single-element semiconductors based on the group IV elements
germanium and silicon are now developed to full maturity, which means there is
little scope for further radical improvement using these materials alone.
Compound semiconductors composed of elements from groups III and V of the
periodic table have been under investigation for some years [18]. Gallium arsenide
comes into this category. This material can be used to fabricate high-speed devices
because of its high electron mobility (low effective mass of electrons). The
detection and generation of light by the semiconductor is another great advantage
because of its use in optoelectronic applications for which there is an increasing
demand as discussed in Chapter 12.

11.5.1 Fabrication of devices with ever smaller feature sizes
What limitations, if any, are going to be encountered as the sizes of devices on
semiconductor chips continue to be reduced?
The width of the smallest feature of a transistor fabricated on a semiconductor is
known as the 'linewidth'. As shown in Table 11.1 [19], the linewidth is currently
0.15 um. In the past the linewidth of transistors on chips has been halved every
6 years; while clock speed, which indicates how fast devices can operate, has
doubled every two years. Furthermore, as a result of these advances, the storage
density of RAM has doubled every 18 months. The table shows an ambitious set of
goals for the industry. However, in order to achieve these, some radical changes in
materials and designs are needed.

Electron beam lithography was developed by Bell Laboratories. This uses
100-keV electrons together with a 4 :1 reduction image projection technique [20].
Electron beam lithography circumvents the problem of diffraction limitations
encountered with optical lithography. It also uses an incoherent beam of electrons
so that there are no interference effects. The feature sizes that can be produced are
much greater than the 3.7-pm electron wavelength, with critical dimensions of

Table I I.I Shrinking semiconductor chip feature sizes [21].

Year of production

Line width, nm
Microprocessor gate length, nm
Oxide thickness, nm
Junction depth, nm
Interconnect dielectric constant, k

1999

180
140
1.9-2.5
47-70
3.5-4.0

2002

130
85-90
1.5-1.9
25-43
2.7-3.5

2005

100
65

1.0-1.5
20-33
1.6-22

2008

70
45
0.8-1.2
16-26

1.5

2011

50
30-32
0.6-0.8

11-19
<l.5

2014

35
20-22
0.5-0.6

8-13
<l.5
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35 nm being achievable using this method. The drawbacks of electron beam
lithography are its low throughput capability and its high cost. This technique is
one of two being considered for further development for sub-70-nm lithography.
The other is the continuation of deep ultraviolet lithography [21].

The progressive reduction in the physical sizes of components on chips only
provides solutions over the next few years. Beyond that the electrical insula:

tion requirements become a problem because of the small feature sizes. To attain
100-nm linewidths, the oxide layer thickness will need to be reduced to about
1 nm (or about 3 atoms), and this means that the electrical insulation provided
by the current generation of materials will be inadequate because of quantum-
tunnelling currents.

Alternative materials with higher dielectric coefficients such as silicon nitride
are coming under consideration. In fact, SiN is already being mixed into the gate
oxide of chips to improve insulation. Another way to solve the insulation problem
as features get smaller, is to use the 'silicon on insulator' (SOI) technology. In this
case, the insulating silicon dioxide layer is buried under the transistors [22]. The
silicon on insulator chips can operate at lower voltages, thereby reducing the
problem of leakage currents. These chips can also operate at higher temperatures
than the conventional chips, and the capacitance of devices fabricated on the chips
are lower, leading to potential for operation at higher frequencies.

The overall speed of operation of devices on chips depends on the resistance
and capacitance of the components. SOI offers the prospect of reduced capaci-
tance, and resistance could be reduced if copper interconnects were used instead
of aluminium. However, as is well known, copper 'poisons' silicon. Nevertheless,
the advantages of reduced resistance are so great that chip producers are changing
to copper connections and placing the necessary chemical barriers between Cu and
Si. However, this has the disadvantage of taking up valuable space on the chip.

Semiconductor fabrication and lithography systems currently routinely produce
Si wafers of diameter 200 mm complete with electronic components fabricated on
them. In the near future wafer-handling capabilities will be extended to 300-mm
diameter [23].

11.5.2 Gallium arsenide
What are the relative advantages and disadvantages of gallium arsenide over silicon?
The properties of GaAs and Si are compared in Table 11.2. From this table, it is
clear that the electron mobilities in GaAs are much higher than in silicon, and
that the electron band gap is direct in GaAs while indirect in Si. Figures 7.4 and
7.5 showed the relevant positions of the electron band structures of these two
semiconductors, from which it is clear that the valence bands of the two semi-
conductors are quite similar, but the conduction bands are very different [24].

The lower effective mass of the electrons in GaAs arises from the curvature of
the conduction band, particularly close to the centre of the Brillouin zone. Charge
carriers move faster in n-type semiconductors (where they are electrons) than in
p-type semiconductors (where they are holes). The ratio between the mobilities of
the charge carriers in GaAs is greater (10:1) than in silicon (3:1).
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Table 11.2 Comparison of the properties of gallium arsenide and silicon [24].

a Where ND= I0l7/cm3 and T = 300 K

As a direct result of the lower effective mass of electrons in GaAs, the charge
carriers can cross the channel (the region of the transistor between the emitter and
collector) in less time. This means that GaAs devices have higher switching speeds
and hence have a higher maximum frequency of operation, than silicon-based
devices. In the present 0.5 urn technology, the switching time for a GaAs device is
about 70 x 10~12 s, whereas for Si, it is about 150 x 10~12 s. The principal areas
of application of GaAs have been described by Chang and Kai [25]. The main
application for GaAs microprocessors is in the manipulation of higher-speed serial
digital data, while other applications include optoelectronic devices which take
advantage of the direct band gap.

Gallium arsenide circuits, in addition to being faster than similar silicon circuits,
consume less power, have lower noise, can radiate and detect light more efficiently
in the visible wavelength range and have an easily engineered band gap when
alloyed with other similar semiconductor materials. For example, when alloyed
with gallium phosphide the band gap can be altered from 1.42 to 2.26 eV
corresponding to wavelengths in the optical range from red to green. In view of all
these advantages it might well be asked why there has not been a wholesale switch
from silicon technology to gallium arsenide technology in the semiconductor
industry. The reasons are, however, economic: gallium arsenide is both expensive
to produce and difficult to fabricate into integrated, single chip, circuits and
devices, while silicon is very plentiful and is relatively easily fabricated.

On the other hand, the most rapidly developing applications of semiconductors
are in photonic transmission of information ('optical computing') and a high level
of interest has been aroused in gallium arsenide and related materials. Modern
computers can produce data streams which are too fast for conventional copper
wire conductors to transmit over distances greater than about 200 metres. The
result of conventional transmission under these conditions is that consecutive
signals begin to blur. Optical communication overcomes this limitation and allows
computers to communicate at high speed over very large distances using optical
fibres and light emitting diodes or diode lasers. It is in this particular application
that the optical semiconductors are finding important uses, since despite the
difficulty of fabrication they provide functions that other semiconductors cannot.

250

Property GaAs Silicon

MOS grade thermal oxide No Yes
Thermal conductivity (W/cm K at 300 K) 0.46 1 .45
Linear thermal expansion coefficient ("C)~ ' 5 x I0~6 2.6 x I0~6

Electrical breakdown field (V/cm) 4 3
Relative dielectric constant 12 1 1 .8
High-quality n-type diffusion No Yes
Electron mobility in n-type material (Surface/bulk cm2/Vsa) N A/4000 400/900
Bandgap Direct Indirect
Total dose radiation tolerance (rads) < 1 08 1 06- 1 07
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11.5.3 Band gap engineering with various III-V semiconductor
Since the band gap is the dominant characteristic of a semiconductor how can
materials with predetermined band gaps be fabricated?
A large band gap in a semiconductor eliminates much of the intrinsic contribution
to the conductivity by making thermal stimulation of electrons across the band gap
less probable. The larger the band gap the lower the number density of electrons in
the conduction band. This means that the conducting properties of the semi-
conductor can be more precisely controlled by the addition of donor or acceptor
elements if the band gap is larger.

The III-V semiconductor compounds include Ga/Al/In-As/P/Sb which can be
alloyed together to form solid solutions. This allows the band gap in these
materials to be varied simply by changing the chemical composition [26]. The
various band gaps of the alloys are shown in Fig. 11.22.

One of the first alloy semiconductors of this group to be used was the ternary
compound GaAs^P* which was used for red light emitting diodes. The maximum
brightness of this alloy as an LED was found to occur with x = 0.4 which gave an
energy gap of 1.9eV. Other compound III-V semiconductors used for opti-
cal applications include Al^Ga^As and Ga^In^AsyPi^. The ability to change
the band gap, as in the GaAs-GaP and GaAs-AlAs compounds, is important for
optical communication and emission and detection of light at different wave-
lengths [27].

0.55 0.56 0.57 0.58 0.59 0.60 0.61 0.62

Lattice Parameter (nm)

Figure 11.22 Variation of the band gap energy with lattice parameter for III-V semiconductors.
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11.5.4 Silicon carbide
What other semiconductor material are being considered in order to produce
microprocessors and integrated circuits with improved performances?
For high-temperature, high-power, or high-frequency operation of semiconductor
devices silicon carbide has come under consideration in those operational ranges
that are not suitable for either silicon or gallium arsenide. The material can
operate at temperatures of 300°C and also can be used in high radiation level
environments. The material has a relatively large indirect band gap ranging from
2.4 eV to 3.35 eV depending on the particular structure of silicon carbide prod-
uced. In this respect, it competes with other large band gap materials including
diamond and the nitrides of the group III elements. Among other interest-
ing properties, it has a very high breakdown field strength of 3.8 x 108 Vm"1,
a high electron drift velocity of 2 x 105 ms"1 and a high thermal conductivity of
490J s"1 m^K"1. Although preparation of adequate quality device structures
from silicon carbide was initially a problem, because of the difficulty in eliminating
defects in the material, this has now been overcome [28].
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12 OPTOELECTRONICS - SOLID STATE
OPTICAL DEVICES

OBJECTIVE

The purpose of this chapter is to describe one of the fastest developing areas of
electronic materials. The need for optical communications between computers,
or for telecommunications, is driven by the need for faster and more precise
transmission of data. Conventional electrical communications suffer from
problems which are related to the speed of communications and the distance
over which such communication needs to be made. Optical communications
through fibres can meet these requirements. There are four main components
to optoelectronics for communications: light generation, transmission, detec-
tion and user interfacing. The devices for these functions are: light emitting
diodes, optical fibres, photodetectors and displays. This chapter presents a
selected overview of some of the materials used for optoelectronics in each of
these main areas.

12.1 ELECTRONIC MATERIALS WITH OPTICAL FUNCTIONS
What do we mean by 'optoelectronics'?
Optoelectronics is the combination of optical and electronic processes in
materials. For example, an electronic transition across the band gap of a semi-
conductor from conduction band to valence band with the emission of a photon is
an optoelectronic process. In optoelectronics, we are principally concerned with
the generation of light as a result of electronic processes in materials, efficient trans-
mission of light for communications purposes and detection of incident light. The
main topics of interest here are therefore lasers and light emitting diodes, photo-
detectors, fibre optics and optical displays.

The whole field of optoelectronics is currently receiving great attention because
of the possibility of developing high-speed computers capable of communicating
at a rate of more than 10 gigabits per second using optical methods. By compari-
son, standard electronic computers operate at frequencies of typically 50 megabits
per second. The improvement in speed is, therefore, likely to be up to a factor of
200. Other developments include the ability to produce low-power, low-cost
optical displays (LEDs and LCDs) using semiconductors, and the ability to fabri-
cate inexpensive, low-power semiconductor lasers.

12.1.1 Photodetectors
How can we detect light and convert it into an electrical voltage?
A photodetector is a semiconductor device that converts light into an electrical
voltage [1]. There are two types of photodetector, the photoconductor and the
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photodiode. The photoconductor is a material in which electrons are stimulated
from the valence band to the conduction band by incident light. This leads to
an increase in conductivity which can be related to the incident light intensity and
wavelength.

A photodiode is a reverse-biased pn junction in which the stimulation of
electrons from the valence band to the conduction band leads to a current under
the action of an electric field (potential gradient). This current is proportional to
the intensity of incident light provided the energy of the incident photons is
sufficient to excite electrons across the band gap. The solar cell is an example of
such a device. It consists of a silicon pn junction which, when placed in sunlight,
generates an electric current that can flow in an external circuit connecting the
two semiconductors.

Photodetectors therefore depend on the photoelectric effect which we have
discussed in a previous chapter, in which absorption of photons causes electrons to
be stimulated to higher energy levels, leading to either an increase in conductivity,
or if a potential gradient is present, as in a pn junction, to the flow of current. The
photoelectric effect in semiconductors causes a marked change in conductivity
which is quite different from that observed in metals because, whereas the metals
already have large numbers of electrons in the conduction band, the semiconduc-
tors do not. The relative effect on the conductivity is therefore much greater in
semiconductors.

In discussing the photoelectric effect here we draw a distinction between it and
photoemission in which the electrons are actually liberated from the material by
the incident photons. Photoemission is characteristic of metals which have higher-
energy conduction electrons available to be emitted from the material as a result of
optical stimulation.

12.1.2 The pn junction as a detector
How can the simple pn junction be used as a detector?
In order to act as a detector the pn junction is reverse biased, since for sensitive
detection a large fractional change in the current is required. It is fairly easy to
detect a change of I /¿A if the current doubles to 2 //A, but somewhat more difficult
to detect a change of 1 //A in 1 mA. Under reverse-biased conditions relatively
little conventional current flows in the pn junction.

As a result of the reverse bias the energy differential across the junction is
enhanced, which makes it very difficult for electrons to pass from the n-type to the
p-type material because of the large energy barrier. This ensures that there is a very
low dark current, and so any photocurrent appears to be relatively large by
comparison. However, electrons in the conduction band of the p-type material can
easily pass into the n-type material.

When photons with sufficient energy to excite electrons across the band gap
(tjuj > Eg) are incident on a pn junction, electrons are stimulated into the
conduction band. These are then driven into the n-type material by the potential
gradient across the reverse-biased junction. The result is a change in conductivity
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Figure 12.1 Principle of operation of a photodetector.

(increased current for the same applied voltage) and this is used to measure the
intensity of the incident light.

12.1.3 Semiconductor light sources
How can a semiconductor be used as a light source*
Conventional light sources emit light as a result of their high temperature in a
process known as incandescence. In this case, most of the energy supplied results
in heat rather than light, so as a light source the process is relatively inefficient.
Luminescence is a different process which is the result of electronic excitation
in which electrons at a high energy fall to an available state at a lower energy.
This results in the emission of a photon of energy equal to the difference in
electron energy before and after the event. Light emitting diodes (LEDs) are used
for this purpose.

Semiconductor light sources operate in the inverse way to the semiconductor
detectors. Again the device can be a simple pn junction which operates as a diode.
It can act as a light source when forward biased. An LED is a form of luminescent
lamp. When current flows through the semiconductor, electrons recombine with
holes by decaying to a lower energy level and emitting a photon.

Attractive features of light emitting diodes are that they are energy efficient,
have a long lifetime, do not overheat and in most cases are relatively inexpensive.
Currently, LEDs do not provide enough light for illumination but are often used
for information displays or data presentation. In the future it is quite likely that
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LEDs will be developed for illumination and in this case, because of their high
efficiency and low heating loss, they are likely to become the preferred mode
of lighting.

The wavelength of the emitted light is governed by the semiconductor band gap
because the initial high-energy electron state is most often at the bottom of the
conduction band and the final low-energy electron state is at the top of the valence
band. Optical transitions such as this occur with high probability in direct band
gap semiconductors but not in indirect band gap semiconductors. Therefore
silicon is not a suitable material for LEDs, but gallium arsenide and the family of
III-V compound semiconductors are well suited for this application.

12.2 MATERIALS FOR OPTOELECTRONIC DEVICES
Which materials are widely used for optoelectronic devices?
Present-day optoelectronic devices incorporate exotic materials processed with
the utmost care, and they function by the manipulation of electrons and holes by
electrical and optical means. Both LEDs and laser diodes are used as visual
indicators. The market for light emitting diodes in the visible range of the electro-
magnetic spectrum is currently about 2 x 109$ per year. The choice of materials
to meet these needs is still quite limited, but is expanding. Absorption and
emission of light are related, so the materials with high absorption coefficients in
the visible spectrum are the materials of choice for both types of applications.

6 4 3 1.5

Wavelength (urn)

1.0 0.8 0.6 0.5

103

1.0 2.0
Photon energy (eV)

2.8

Figure 12.2 Absorption coefficient versus photon energy for Ge, Si, GaAs, and selected other III-V
binary semiconductors at 7 = 300 K [2].
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The absorption coefficients of several semiconductor materials are shown in
Fig. 12.2. These show a very rapid onset of absorption in the direct band gap mate-
rials such as GaAs, InP and InAs. The indirect band gap materials such as Si and
GaP show a much lower rate of increase of absorption with photon energy. How-
ever, Ge, which is known to be an indirect band gap material, shows a quite rapid
increase of absorption with energy above 0.8 eV. This is because Ge has a direct
transition at 0.86 eV which is at an energy just slightly larger than its band gap.
In this respect, Ge behaves more like a direct band gap material above this energy
and is a good photodetector for A ~ 1.3-1.5 ¿¿m.

12.2.1 Advances in materials for optoelectronic applications
How are optoelectronic materials being improved and the range of available
properties expanded?
Optoelectronic devices are fabricated at present mostly from GaAs or variants such
as InGaAs. However, the range of materials options available has expanded as
other direct band gap materials have been explored. In particular, materials with
larger direct band gaps have been developed and improved, and these now allow
green and blue LEDs to be fabricated. Materials such as InGaAsP are already well
developed and so these are likely to remain the principal materials of choice for
longer wavelength devices in the red-orange-yellow range of the optical spectrum.

Improved energy conversion efficiencies ('quantum efficiencies') have been
achieved in recent years with AlGaAs and AlInGaP materials, which now have such
improved light emission intensities that they can be used for outdoor displays [3].

Problems with producing green LEDs arose because GaP, which has a suitable
band gap, has a quantum efficiency of only 0.1% due to its indirect gap. The
alternative material, AlInGaP also has a quantum efficiency of only 0.1%. Gallium
nitride GaN and related materials such as AlGalnN are better suited for optical
applications because they have direct band gaps and higher quantum efficiencies.
AlGalnN in particular forms solid solutions so that a continuous range of band
gaps can be obtained by varying the composition.

Improvements in the optoelectronic efficiency of indirect band gap materials,
such as silicon, have brought these materials into consideration for optoelectronic
devices. Furthermore, there have been a number of advances in polymeric materials
in recent years, which now make these organic compounds viable for optoelec-
tronic devices.

12.2.2 Band gaps of semiconductors
How can the colour of light emitting diodes be selected?
Most LEDs have emissions in the infrared (2000-700 nm) or the optical range
(700-400 nm). Visible LEDs are used as numeric displays or as small indicator or
warning lamps. Infrared LEDs are used as optical isolators or as sources in optical
communications systems such as computer communications.

The usual LED materials are aluminum-gallium arsenide AlxGai_*As, gallium-
indium arsenide-phosphide, Ga*In \ _^AsyPi _y, and gallium arsenide-phosphide
GaAsyPi_r The band gap of these materials is dependent on the alloy composition,
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Figure 12.3 Dependence of the wavelength of optical emissions from GaAs/GaP, the first LED
material in widespread use.

and can be engineered to a high precision by alloying. Fortunately, the HI-V
elements form solid solutions which makes alloying simple in these cases and so the
band gap is relatively easy to control in this way. This means that the wavelength of
the emitted light can be selected by choosing the appropriate alloy composition as
shown in Fig. 12.3. Wavelengths throughout the optical range and into the infrared
are easily available with these alloys. The III-V alloys still have direct band gaps so
they remain optically useful.

In gallium arsenide, up to 30% of the input energy can be converted to light, but
this occurs at a wavelength of 900 nm which is in the infrared and so is of no use as
an optical display, for which the wavelengths of emissions must be detectable by
the human eye. Gallium phosphide gives visible light at about 550 nm, but its
efficiency is low because of its indirect band gap. The alloys of these materials have
intermediate wavelengths and efficiencies.

12.2.3 Wide band gap semiconductors
What materials can be used for optoelectronic devices at shorter wavelengths?
Wide band gap semiconductors (Ee > 3 eV) have been the subject of intense
interest because of the possibility of providing low-power solid-state lasers and
LEDs at the blue end of the visible spectrum. If emissions at short wavelengths in
the blue end of the optical spectrum are required there are other options.
Expensive SiC semiconductors can be used. However the latest development is the
II-VI family of semiconducting compounds such as ZnS and ZnSe which have
band gaps in the range 3.6 eV to 1.5 eV as shown in Fig. 12.4 spanning the entire
optical spectrum. These materials and others, such as CdS and SrS, are now being
investigated for use as full-colour, thin film, electroluminescent displays [4].
Progress has been made using GaN doped with magnesium to form electro-
luminesent LEDs ranging from blue to green wavelengths.
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12.2.4 Gallium nitride and other group III nitrides
What other IH-V semiconductors may be useful?
Materials such as gallium nitride, aluminium nitride and indium nitride, can now
be produced with device quality. These materials have direct band gaps in the
energy range 1.9-6.2 eV (650-200 nm), and consequently developments in these
materials have opened up a number of possibilities for optoelectronic devices in
the short wavelength range of the visible spectrum and into the ultraviolet. Some
electronic properties of these materials are shown in Table 12.1 [3].

Table 12.1 Properties of GaN, AIN, and InN.

Property

Energy gap (eV) (direct)
Lattice constant, a (A)
Lattice constant, c (A)
Density (g/cm3)
Static dielectric constant
Dynamic dielectric constant
Electron mobility (cm2/Vs)
Hole mobility (cm2/ Vs)
Breakdown field (V/cm)
Saturation velocity (m/s)
Electron effective mass
Light hole mass
Sound velocity (m/s)
Optical polar phonon energy (eV)
Deformation potential (eV)
Kth- (W/crrTC)
Melting temperature (C)

GaN

3.4
3.189
5.185
6.1
9.5 (8.9)
5.3

1000
30

>5x I06

2.5 x I05

0.2
0.259
5 x I03

0.092
8
1.5

>I700

AIN

6.2
3 . 1 1
4.98
3.26
8.5
4.84

14

0.314
0.471

I04

0.11
19
2

3000

InN

1.89
3.54
5.70
6.88

19.6
9.3

0 . 1 1

«MOO

Gallium nitride emits light in the visible range with a blue-green colour, but
again with rather low efficiency. The efficiency of GaAsi^P* decreases as the
composition x increases. Beyond x = 0.45 the band gap becomes indirect and
the probability of transition, and therefore the optical efficiency, decreases rapidly.
However, the addition of nitrogen in place of phosphorus leads to a more efficient
radiative process.

The prospects for using low-power solid-state lasers at the blue end of the visible
spectrum (A ~ 380-450 nm) instead of the red end of the spectrum (A ~ 380-
780 nm) has opened up the possibility of improved data storage densities using
either optical or magneto-optic means because the data storage density increases
with the square of the inverse of the wavelength of the light that is used to write
data on the disks.

Another area of possible applications of GaN and related materials is in high-
temperature, high-power electronic devices. The other material that comes into
consideration here is SiC, and more progress has been made to date with SiC than
GaN Because SiC has been under investigation longer. Nevertheless, the group Ill-
nitrides have excellent properties for such applications and may be expected to be
serious candidates for these applications in the near future.
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Figure 12.4 Band gap energies of 1 1 -VI compound and alloy semiconductors compared to other
semiconductors.

12.2.5 Silicon
Is it possible to use silicon in optoelectronic devices?
Silicon is the material of choice for most semiconductor/electronic applications.
It has a well-established processing technology that is the result of many years of
industrial experience with the material. However, it does have an indirect band
gap, which makes its quantum efficiency low for optoelectronic functions.

The demand for high-frequency, long-distance communications indicates the
need for integration of optical and electronic functions in which standard
microelectronic devices produce electrical signals, which are then converted to
optical signals for long-distance transmission, and then reconverted to electrical
signals. Consequently, there could be significant advantages derived from improv-
ing the optical functions of silicon to allow efficient, silicon-based optoelectronic
devices to be constructed. In this respect progress has been made on a variety of
silicon or silicon-based materials. These include nanocrystalline silicon, porous
silicon, silicon-germanium and rare earth-doped silicon, particularly erbium-
doped silicon. The benchmark for acceptable quantum efficiency in weakly opto-
electronic materials is 1%. This was achieved in nanocrystalline silicon by Canham
in 1990, although this is still an indirect band gap material.

Nanocrystalline silicon is still receiving much attention as a candidate material
for optoelectronic applications [5]. The search for improved quantum efficiencies
continues, and as a result a whole range of different forms of silicon have been
produced with improved light-emitting and absorbing properties [6]. Porous
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silicon, in the form of a network of nanowires, has a different band structure from
normal bulk silicon. This difference is caused by the fact that a high volume
fraction of the material is close to the surface, and the electrons in these near-
surface regions behave differently [7,8]. Consequently, a large volume fraction of
electrons in the porous silicon behave differently from electrons in the bulk
material. As a result, it has been found that optoelectronic properties of silicon are
significantly modified [9] when in porous form. In particular, the quantum
efficiency of the material for optical functions is greatly enhanced.

In addition, because of the advantages that would arise from being able to
integrate optical components with silicon-based devices, efforts have been made
to identify direct band gap materials that can be grown directly on silicon. Results
that have identified two direct band gap semiconductors, with gaps in the range
0.7-1.OeV that can be lattice-matched to silicon, have been reported by Zhang
et al. [10].

12.2.6 Rare-earth-doped silicon
Is it possible to modify silicon to make it more suitable for optoelectronic devices?
Rare earth elements can be used to dope materials to improve their optoelectronic
functions for a variety of applications. This includes ultraviolet, visible and
infrared lasers and light emitting diodes. In particular, the doping of silicon with
erbium has resulted in a material that can be used in electroluminescent devices at
A = 154/¿m and this has opened up the prospect of silicon based optoelectronic
devices with high quantum efficiencies [11].

The most technologically important of the rare-earth-doped semiconductors is
at present erbium-doped silicon which has revolutionized optical fibre commu-
nications by allowing 'all optical' amplification of signals being transmitted down
the fibre without the need to convert to electronic signals, amplify and then recon-
vert to optical signals. However, the addition of other rare earth ions can be used
to produce a variety of colours in the visible range. Colours that are available now
include red (Pr3+ and Eu3+), green (Tb3+ and Er3+) and blue (Ce3+ and Tm3+)
[12]. These are being used in flat panel displays, such as plasma displays, electro-
luminescent displays and field emission displays, where emission in the visible
spectrum is essential.

The development of rare-earth-doped solid-state lasers is proceeding very
quickly with numerous applications at the shorter wavelength end of the visible
spectrum. The best known rare-earth-doped laser material is 'Nd : YAG' (neodym-
ium yttrium aluminium garnet) which has a chemical composition of Y3Al5Oi2

together with Nd3+ dopants. This produces light with a wavelength of 1064 nm.

12.2.7 Polymeric materials
Can polymers be used as the basis for optoelectronic devices?
The development of polymeric materials with similar optoelectronic properties
and functions to those of the conventional semiconductors is a relatively recent
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advance. Reports of light emitting devices fabricated from organic materials began
to appear in the 1980s. Polymeric optoelectronic materials have attracted
attention because of their ease of fabrication in large areas of electroluminescent
material with an almost unlimited choice of band gaps, and hence a complete
range of colours [13]. These polymeric electroluminescent materials behave very
similarly to conventional semiconductor LEDs. Their band gaps can be fairly
easily controlled, leading to easy selection of the colour of displays. The optical
efficiency of these materials can also be surprisingly high. As an example, polymers
have been reported with quantum efficiency greater than 70% [14].

The main interest in these materials at present is in relatively small band gap
materials. A summary of much of the important research in the field has been
given by Blatchford and Epstein [15]. Among the many possible optoelectronic
applications of polymeric materials are as backlighting for flat panel displays,
alphanumeric displays (as a replacement for conventional semiconductor LEDs) or
high-density information displays. In this last application a layer of electro-
luminescent polymer is sandwiched between a pair of thin film electrodes.
Electrons are injected using a high electric field at the cathode, while holes are
injected similarly at the anode. The process then continues in much the same way
as in a conventional semiconductor optoelectronic devices. Electrons and holes
recombine with emission of photons of a characteristic energy. The polymers
usually have low levels of dopants and so behave like extrinsic semiconductors.

12.2.8 Minority carrier injection: injection diodes
How is electron-hole recombination brought about in the light emitting diode?
The process of minority carrier injection is used in light emitting diodes. These are
forward-biased pn junctions. It leads to recombination of electrons and holes with
the emission of light. The process occurs at the boundary of a pn junction, the
depletion layer, if a forward-bias voltage is applied. Electrons are injected from the
n-type towards the p-type material by the voltage and holes are driven in the
opposite direction. Once in the depletion layer electrons recombine with holes
and emit light. Injection diodes are often used as small indicator lamps. Their great
advantage is that they have high efficiency, a long lifetime and in most cases are
relatively inexpensive.

12.2.9 Recombination process and light emission in LEDs
Where does the electron/hole recombination occur?
The forward biasing of the pn junction, as shown in Fig. 12.5, forces electrons up
the potential ramp of the conduction band so that they reach locations in ¿-space
where lower-energy states are available in the valence band. An optical transition
can then occur from the conduction band into an available state in the valence
band. This occurs in the depletion region (space charge region) of the junction.
The result is the emission of a photon of energy equal to the band gap. There is
also a rapid increase in current with forward-bias voltage.
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Figure 12.5 Principle of operation of a photoemitter.

The wavelength of the emitted light is determined by the band gap of the
material. By engineering the band gap of the material light emitters of different but
specific frequencies can be fabricated.

12.2.10 Light detection and generation
What other applications for optoelectronic semiconductors are anticipated?
We have discussed above the operation of phase-coherent light using laser sources.
The pn junction described can also be used to detect and generate noncoherent
light. It is suggested that these luminescent semiconductor light sources will be the
preferred method of illumination in the future, replacing conventional incandes-
cent filament lamps and fluorescent tubes. They will be more energy efficient, will
not generate heat and will have virtually limitless lifetimes. These are significant
advantages which are now leading to the development of such light sources for the
consumer market.

12.3 LASERS
How does a laser semiconductor light source differ from a normal luminescent
semiconductor light source?
A laser is a device which emits an intense beam of light composed of photons all of
the same wavelength, and all in phase. This is known as a coherent light source.
The laser gives an intense energy concentration because the beam divergence is
small, as a result of the method of generation of the light in the laser cavity.
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There are several different types of lasers:

(i) Semiconductor lasers
(ii) Optically pumped solid-state lasers
(iii) Dye lasers
(iv) Gas discharge lasers
(v) Gas dynamic lasers
(vi) Chemical lasers
(vii) Liquid laser
(viii) Free electron lasers

Of these we will only be concerned here with the semiconductor laser. Semi-
conductor (junction) lasers are often fabricated from aluminium gallium arsenide
or gallium arsenide [16]. When an electrical current is passed through such a
device laser light emerges from the junction.

When an electron has been excited, for example into the conduction band of a
semiconductor, it must return finally to a lower energy state, either in the valence
band or a localized impurity state in the band gap. This occurs with the emission of
a light photon. In many cases this emission is spontaneous as in the light emitting
diode. Consequently, the radiation is phase incoherent, and therefore this does
not constitute laser action. However, in a laser this emission of light occurs by
controlled stimulation rather than spontaneously, and this gives phase-coherent
photon emission which is characteristic of laser light.

12.3.1 Emission of laser light as a result of electron de-excitation
How are the conditions for stimulated emission created?
In the very simplest case, consider two energy levels, one at the top of the valence
band and the other at the bottom of the conduction band, as shown in Fig. 12.6.

In order to get light emission we must have energy stored somewhere in the
system waiting to be released. This is achieved in the form of electrons in excited
states. In a laser the term 'population inversion' is used to describe the presence of
a large number of excited electrons. The lifetime of the electrons in the excited
state must also be long enough to ensure that the transition to a lower-energy state
does not occur spontaneously, but only under controlled conditions. The presence

Figure 12.6 Electron energy levels of a two-level laser.
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of such a population inversion is a common feature of all lasers since large num-
bers of electrons need to be maintained in a high-energy state over an extended
period of time. This requires rather special conditions which we will discuss.

12.3.2 Production and maintenance of the population inversion
How are large numbers of electrons maintained in a metastable higher-energy state?
Optical pumping is used to produce a large number of electrons in a metastable
high-energy state. This involves a high-intensity light source to stimulate electrons
into the higher-energy level. The electrons later decay to their original lower level
with the emission of light. When the electron reverts to the lower-energy state a
photon is emitted with energy equal to the difference in energy of the two states
and frequency u given by

ku = E2-E}. (12.1)

Population inversion is the redistribution of electrons among available energy
states by stimulation into metastable higher-energy states. This results in more elec-
trons occupying high-energy states than can be indefinitely sustained. It represents
energy stored in the material. Population inversion can be achieved by a number of
mechanisms of which 'optical pumping' is only one. Other methods for producing
the population inversion include: electrical discharge, chemical reactions, nuclear
reactions, electron beam injection and conventional current injection.

The pumping of electrons into excited states is most effective if there is a broad
range of energies in the upper energy band. The pumping can then be achieved by
a broad range of wavelengths from the light source. This means that the simple
two-level laser is not the most efficient configuration for producing laser light
from a semiconductor.

If the semiconductor has a range of excited energy levels then the light source
can have a continuous range of wavelengths (i.e. can be polychromatic). Electrons
are then excited into a range of energy states in the conduction band where they
remain until they are caused to de-excite, with the emission of a photon. Typical
optical sources are xenon and tungsten iodide filament lamps.

12.3.3 Stimulated emission
How is the stored energy released?
The release of stored energy from the laser occurs when excited electrons drop to
a lower-energy state as a result of being stimulated by a photon of the correct
energy passing through the material. This leads to the emission of a photon with
energy hu corresponding to the difference in energy of the electron before and
after decay.

When electrons occupy an elevated energy state they can be forced to return to
a lower unoccupied state by a kind of resonance involving a photon of the same
energy as the transition. The emitted light is phase coherent with the stimulating
light. In laser action, the large number of electrons occupying high-energy
metastable states can be caused to return to available lower-energy states by
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an avalanche effect of photons in a chain reaction. This leads to the production of a
high-intensity, monochromatic, phase-coherent beam of light which is known as
a laser beam.

12.3.4 The emission process
Why is the emitted photon phase coherent with the stimulating photon?
Experimental evidence shows that the passage of a photon through the material
can stimulate the transition of other electrons to lower-energy states with the same
transition energy through a resonance. The emitted photon is found experimen-
tally to be phase coherent with the stimulating photon. If this process continues,
further photons are produced with the same energy and in phase coherence with
the first photon. The result is light amplification by stimulated emission of
radiation. Laser light is monochromatic because the difference in energy levels,
and hence the difference in energy of the electrons before and after emission, are
the same throughout the material. Therefore, the photons emitted at any location
in the material will have the same energy.

Laser light is also strongly collimated as a result of the method of generation in a
long narrow cavity. The semiconductor has mirrored end faces. The laser light is
reflected many times between the end mirrors of the cavity leading to a beam with
very low divergence. Any photon which is not closely parallel to the axis of the
cavity is soon absorbed, leaving only those with low divergence. This is shown in
Fig. 12.7.

Mirror surface Mirror surface

p-type
material

pn junction -

n-type material-

Laser beam

Figure 12.7 Amplification of light photons by stimulated emission of radiation in the cavity of a laser.

12.3.5 Three-level laser
How can the performance of a laser be improved by the use of semiconductor
material with different electronic properties?
The need for high-efficiency pumping and for a well-defined transition energy are
mutually exclusive in a two-level system. This is because a well-defined optical
transition energy requires the upper electron level to be narrow. The simplest way
around this problem is to have three electron levels as shown in Fig. 12.8, with a
broad upper energy band, with short lifetime for high pumping efficiency, from
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Figure 12.8 Electron energy band diagram for a three-level laser.

which the electrons de-excite into a narrow-energy, long-lifetime level. The long
lifetime of electrons in this narrow band allows high population inversion to be
created and maintained.

The three-level laser has a number of advantages, one of which is that a range of
exciting frequencies can be used to stimulate the electrons initially. This makes the
pumping process more efficient, leading to a higher population inversion. In this
case, the high-intensity light source has a higher frequency than that which the
laser is to emit. Electrons are stimulated into the higher-energy, short-lifetime
states of the 'pump band' and then de-excite to the narrow intermediate level. The
lifetime of the electrons in this narrow intermediate energy level is much longer,
being typically milliseconds, and this allows the population inversion to be
maintained. The electrons are then stimulated to de-exite to the lowest level with
the emission of a photon.

12.3.6 Four-level laser
Are there further refinements of the electronic structure which can lead to improved
performance of the laser?
A further refinement is the four-level laser which has two lower energy levels as
shown in Fig. 12.9. This results in emptying of the energy level E2 into energy
level EI, and hence an even larger population inversion between levels E2 and E3

between which the stimulated emission of light occurs.

o •
• o

Figure 12.9 Electron energy level diagram for a four-level laser.
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12.3.7 Laser materials
What materials are used in solid-state lasers?
A wide range of materials are currently used in the construction of solid-state
devices for the generation of laser light. These include

(i) ruby (A12O3, Cr3+ doped)
(ii) glass (Nd3+ glass or YAG)
(iii) gases (helium, neon)
(iv) vapours (mercury, cadmium)
(v) C02

(vi) liquids (dye lasers)
(vii) semiconductors (gallium arsenide and related III-V semiconductors)

12.3.8 Semiconductor lasers (laser diodes)
How does the semiconductor laser work?
The semiconductor laser can be described fairly easily in terms of the electronic
properties of materials discussed earlier. The cavity consists of pieces of doped
n- and p-type semiconductors in the form of a single pn junction, which we have
described above. In such a junction, the electron band structure is distorted under
forward biasing, as shown in Fig. 12.5. This gives a light emitting diode, but by
arranging that the light emission only occurs when stimulated by photons of the
same energy, laser action can be set up.

The stimulated emission only occurs where there is a high population of excited
electrons created by 'pumping'. Pumping occurs by direct injection of electrons
into the depletion layer where the electrons remain in a metastable state until they
are stimulated to return to the valence band by the passage of a photon of the
correct energy. The transition only occurs in the depletion layer.

12.3.9 Types of semiconductor junction lasers
What different types of semiconductor laser are there?
When the two parts of the junction are made from the same material then the
device is known as a homojunction laser. When the p and n parts of the junction
are made from different materials the device is known as a heterojunction laser.

Laser
light
emitted

Fully reflecting Partially reflecting

Figure 12.10 Stimulated emission of radiation in the semiconducting material of a laser. The two
ends contain parallel mirrored surfaces, and this, combined with the elongated
junction region, ensures low beam divergence.
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The heterojunction lasers have some advantages if constructed in such a way
that the refractive index of the active region is larger than the surrounding regions.
This produces an optical waveguide which means that the laser action is confined
to the junction layer and no heat is absorbed by the remaining material. The
heterojunction laser has higher efficiency because the laser light confined to the
junction layer also helps to stimulate more electrons to de-excite.

12.3.10 Applications of semiconductor lasers
Where do semiconductor lasers find specialized applications that differ from the
larger high-power lasers?
Helium-neon lasers which have ultra-low beam divergence are used for alignment
purposes. Highly focused pulsed laser beams can be used for drilling narrow holes.
Optical disks for audio and digital recording applications need to be encoded and
read using a laser beam. The laser diode is also used in digital audio and video disk
players to read the information encoded on tracks molded onto the disks. Lasers
are also used as a cutting tool in laser surgery.

In telecommunications the high frequency of the laser light (1014Hz) enables
intensity to be rapidly altered to encode complex signals. The emitted light signal
can be modulated at high frequencies by the voltage applied to the semiconductor
[17,18]. This allows the possibility of optical communications at high frequencies
and over long distances.

12.4 FIBRE OPTICS AND TELECOMMUNICATIONS
What are the advantages of optical communications over conventional electrical
communications ?
In many cases optical fibres are used as waveguides to ensure that emission of light
from a source reaches the appropriate detector. These optical fibres are trans-
parent materials fabricated with a high length-to-diameter ratio to ensure that
light travelling down them is totally internally reflected from the side walls and
therefore that very little energy is lost.

Since the emission of light as a result of laser action is dependent on the applied
electric field, or on the injected current, it becomes possible with a semiconductor
laser to modulate the optical signal through control of the electric field or the
injected current. This means that optical communication can be achieved in this
way [19], and such communication has distinct advantages over conventional
electrical communication in terms of speed and distance over which communica-
tion can be maintained.

12.4.1 Fibre optical networks
How do optical fibres compare with conventional metal wires for communications?
In order to satisfy the increasing domain for digital communications over the
internet, there has been a rapid increase in the number and size of fibre optic
networks over the last ten years. This trend continues to increase resulting in even
greater demands for high-frequency, long-distance digital communications. The
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best copper wire communications systems have a bandwidth of 10Mb/s and are
limited to typically 200 m at the higher end of the data transfer rate. The attenua-
tion in copper is 2.5dB/km at 1MHz and 50dB/km at 1 GHz. Silicon dioxide
optical fibres have a bandwidth of 100 Gb/s and can transmit data over distances
of typically 80km. The wavelength of minimum attenuation in silicon dioxide is
A = 1.55 ¡im when attenuation is only 0.2dB/km [20].

Optical fibres are made from glass or plastic ('plexiglass' or 'perspex'). These
are solid tubes which act as waveguides for light. High quality optical fibres are
made from glass as the attenuation is lower than for plastic fibres. The high
attenuation of plastic fibres means that they are only used in a limited number of
applications, usually for shorter-distance communications. The glass optical fibres
are thinner than a human hair and consist of a core region with larger refractive
index and an outer cladding region with lower refractive index. The refractive
index of the material is changed using dopants such as germanium dioxide,
phosphoric oxide or boric oxide. This arrangement confines the light to the core
region. Core diameters are typically 1-100/xm in diameter, while the cladding is
typically 100-300 jum in diameter.

Optical fibres can be made in single- and multimode form. The single-mode
fibre is thinner in diameter with a l-10-/mi core. The refractive index of the outer
cladding layer is 0.1-0.3% lower than the core region and there is usually a
discontinuous change in refractive index from the core to the cladding. The
multimode fibres have a core diameter of typically 40-100 ¿¿m and a refractive
index change of 0.8-3.0% from the core to the cladding. These multimode fibres
can have either discontinuous or graded refractive index change from core to
cladding. In these multimode fibres multiple electromagnetic field configurations
can propagate down the fibre simultaneously [21],

Despite the performance characteristics of SiO2, attenuation of the optical
signal eventually limits the range of communications frequencies over larger
distances so that unless some form of signal amplification is used, the highest data
rate is limited by the distance over which the data is being transferred. For
example, over the TransAtlantic and TransPacific optical fibre cables, the data
transmission rate was limited to 250Mb/s. However, the discovery of optical
signal amplification using erbium-doped silicon dioxide has radically changed the
situation, as described in Section 12.2.6. These optical amplifiers can simulta-
neously amplify signals over a 3-THz frequency range.

The erbium-doped fibre optic amplifier comprises several metres of silica doped
with Er3+. The Er3+ is excited to a metastable higher-energy state so that a
population inversion is created with more ions in the high-energy state than the
low-energy state. This region then can provide an active amplification of signals at
the appropriate frequency. The principles of the operation of the erbium-doped
fibre optic amplifier are very similar to those of the semiconductor laser, except, of
course, that the photons only pass through the amplifying region once causing de-
excitation of the Er3+ ions.

In order to get the erbium ions into a higher state, energy is supplied through the
use of an infrared optical pump which is coupled to the erbium-doped region of
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the optical cable. When they de-excite, the erbium ions emit photons in the 1530-
1560 nm wavelength range which corresponds to the range used in silicon dioxide
fibres for communications. Amplifier gains on commercial units are typically
20-3 OdB, but high-performance research systems have even reached 40 dB [20].

The erbium-doped silica optical amplifier is in high demand at present for
digital signal communications over longer distances (>80km). However, this
material is limited to its effective wavelength range of 1530-1560 nm. The need
for increased bandwidth, which will allow the number of communication channels
to be expanded within a single optical fibre, means that there is a need to identify
other rare earth materials that can be used to dope silica and provide efficient
optical amplification at other wavelengths [22].

12.4.2 Large scale optical fibre communications
How long is the largest optical fibre network today?
The longest man-made structure today is the 27 300 km fibre optic link around the
globe ('FLAG') which provides an optical communications link from the UK to
Japan via Europe, the Middle East, India, and China [23]. This comprises what is
called the third generation of optical fibre technology. The first two generations
were able to operate at data transfer rates of 280Mb/s and 560Mb/s, respectively.
The current third generation operates at 5.3 Gb/s, almost an order of magnitude
improvement over the previous generation.

The cable construction is shown in Fig. 12.11. It consists of two 5.3 Gb/s optical
fibre pairs each carrying 60 000 x 64 kb/s. This amounts to a data rate of 3.84 Gb/s,
while the remaining 1.46 Gb/s is used for 'overhead' purposes. The optical fibres
are SiO2 glass drawn down to 0.125mm and protected with a polymer coating.
The light signals at the optimum wavelength of 1558 nm are generated by semi-
conductor lasers.

Insulator
\

Support wires

Optical fibres
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^Armoured protection

Copper sheath

Unit fibre structure

Figure 12.11 The twin pairs of optical fibres in the FLAG system cable can carry !0.6Gb/s, the
equivalent of 120000 simultaneous telephone conversations. By contrast, only 36
conversations could be handled by the first copper transatlantic telephone cable.
After Deniston and Runge [23].
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The FLAG system uses 'all-optical' amplification of signals using the Er3+-
doped SiC>2 materials described above. These are situated at regular distances of
45-85 km along the length of the cable. The optical amplification is one of the
principal reasons that the FLAG system can operate at such high data-transfer
rates compared with conventional undersea optical cables. While systems such as
FLAG operate at 10 Gb/s, systems with data transfer rates as high as 100 Gb/s are
now under consideration as the bandwidth of communications is expanded.

12.5 FLAT PANEL DISPLAYS
How are flat panel displays constructed?
The market for flat panel displays has grown from typically tens of millions of
dollars per year in the 1980s to about twenty billion dollars a year today. These
flat panel displays come in a variety of different forms, the most important of
which are active matrix liquid crystal displays (AMLCDs), electroluminescent
displays (ELDs), field emission displays (FEDs) and colour plasma displays (CPDs)
[24]. Flat panel displays provide one of the many examples of how a diverse
variety of materials and electronic technologies are integrated to produce a device
with widespread applications in the display of digital information. The con-
struction and features of some of the principal types of flat panel displays are
shown in Fig. 12.12.

The rapid development of flat panel displays has been driven by three main fac-
tors: the need to produce more compact, lighter and more energy-efficient means
to display information. The primary application has been in portable computers,
but there is an increasing demand for large flat panel displays for televisions that
can be hung on a wall. The flat panel displays are competing with, and in many
cases exceeding, the performance of traditional displays based on the cathode
ray tube. Improvements to the flat panel displays continue to be demanded by the
needs of various applications. These improvements include increased brightness of
displays, increased contrast, improved colour purity, higher resolution, longer life-
time, greater viewing angle, reduced power consumption and reduced cost.

In selecting materials for flat panel displays in the future, the fact that rare earth
ions can be used as dopants that emit light in the visible spectrum, including red,
green, and blue light, means that they are particularly well suited for applications
in displays. In all of the main flat panel display technologies rare-earth-doped
materials can provide significant enhancements to the optical functions and
performance. The luminescent dopant that is added to the host material can have a
narrow emission spectrum (by adding a single type of ion) or a broader spectral
range (by adding several different ions). There appears to be no restriction on the
number of different types of dopant that can be added to each pixel of host
material, allowing several colours or even white light to be emitted.

12.5.1 Liquid crystal displays
How do liquid crystal displays work?
Liquid crystals combine the fluidity of liquids with the orientational (anisotropic)
properties of solid crystals. The viscosity of the liquid is similar to machine oil.
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Figure 12.13 Arrangement of a liquid crystal display showing the liquid crystal elongated organic
molecules, polarizing filters, mirror and glass substrates.

Nematic liquid crystals, which are often used for displays, are composed of
elongated organic molecules which align in a preferred direction [25]. In displays,
the molecules of the liquid must be alignable in some way, and this is usually
achieved by an electric field. Polarized light is employed through the use of
polarized filters in the LCD display screen. The back surface of the LCD display
screen has a mirror to reflect incident light. The orientation of the molecules in the
liquid crystals changes the direction of polarization of light. This can then be used
to produce bright or dark regions on the surface of the display screen.

Liquid crystal displays (LCDs) are widely used as displays and have replaced LED
displays in many applications. They are used as flat panel displays for computer
screens where they are rapidly replacing the rather bulky cathode ray tubes (CRTs).
In addition to their small size one of the other advantages of these displays is
their low power consumption. The LCD modifies the ambient light instead of gen-
erating its own light as the LED does. Some LCD displays can operate for more
than a year on small batteries and so these types of display are favoured for pocket
calculators. Another type of display involving the use of ferroelectric materials
instead of liquid crystals is also currently under investigation.

Figure 12.12 The three main flat panel display technologies are shown: (a) The liquid crystal
display contains polarizers, thin-film transistor plate, and colour matrix filter, (b) The
plasma-panel display, in which the phosphor is deposited in the cells as a thick-film
paste, (c) The field-emission display in which a high electric field strips electrons
from the tips of the cathodes which excite phosphors producing a CRT-like image.
After [27]© IEEE 1997.
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12.5.2 Active matrix liquid crystal displays
How does an 'active matrix9 liquid crystal display work?
The active matrix liquid crystal display is currently the most widely used type of
flat panel display. Each pixel has its own switching element for controlling the
state of the liquid crystal cell. The switching elements are mostly thin film
transistors, and there are three of these per pixel. So for a typical display of
1920 x 1035 pixels there are about 6 x 106 thin film transistors needed to control
the display [26].

Since LCDs produce no light of their own, they are used to form an image either
by controlling the transmission of light through each pixel (using backlighting) or
by controlling the light reflected from each pixel. The best-quality images are pro-
duced by backlighting and this is used in laptop computers. For small displays, such
as on hand-held calculators, the reflective LCD is still widely used. Ferroelectric
liquid crystals have very fast switching speeds for LCDs and these are now finding
applications in small high-resolution displays [27].

The main advantages of AMLCDs are that they are light and compact and,
therefore, easily portable. They provide high resolution at a high-speed response
and have low energy consumption. The main application is in portable computers
such as 'laptop' and 'notebook' style computers.

12.5.3 Electroluminescent displays
How does an electroluminescent flat panel display work?
Electroluminescent displays operate using a sandwich structure consisting of two
insulators separated by an intermediate layer of phosphor such as ZnS. Electrons
are injected from one insulator into the phosphor where they cause luminescence
by decaying from their excited state to a lower energy state with the emission of a
photon. The construction of electroluminescent displays (ELDs) is simpler than
other forms of flat panel display as can be seen in Fig. 12.12. This means that
electroluminescent displays are generally more rugged and reliable than the other
forms of display. They can provide better performance than other display tech-
nologies in certain applications, for example, where a wide viewing angle, high
contrast or wide range of operating temperatures are needed. For example, con-
ventional flat panel displays using liquid crystals operate well over the temperature
range — 25°C to +65°C, whereas electroluminescent displays can operate over the
range -60°C to +100°C [28].

12.5.4 Field emission displays
How does a 'field emission display' work?
Field emission displays (FEDs) operate using cathode luminescence which is the
same principle that is used in the cathode ray tubes. However, in FEDs each pixel
has its own pointed electrode which emits the electrons, which then accelerate
across to the anode that is equipped with a phosphor so that light is emitted once
the electrons strike it. Essentially, therefore, the FED is an assembly of very small
cathode ray tubes, as shown in Fig. 12.12.
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The FEDs can be constructed in a thin flat panel which has performance
comparable to that of the more widely used liquid crystal displays. The fabrication
requires no lithography beyond that needed to define the individual pixels. These
features can be produced easily in many cases by using printed circuit board
methods. FEDs are now being produced with improved appearance, longer
lifetimes, improved stability and lower power consumption compared with a few
years ago.

12.5.5 Colour plasma displays
How does a colour plasma display work?
Colour plasma displays (CPDs) now include a full range of colours in the visible
spectrum. They provide high levels of brightness and contrast, wide viewing angles
and a rapid refresh rate. The principles of operation of the display are the same as
those of fluorescent tube lighting that is used for ambient light sources. Recent
improvements in depth of colour, efficiency and luminescence have enabled this
type of display to be used in televisions. Colour plasma displays can be produced
with lifetimes in excess of 10 000 h, which meets the requirements of commercial
television screens. Colour plasma displays are therefore ideal for the large wall-
hung television screens, and they are currently being used in 42" (1.07m) display
screens. In the future, this type of display is likely to be the first choice technology
for large-area displays. CPDs with 60" (1.5 m) diagonals have been produced [29].

12.5.6 Ultrafast electrochromic cells
What are the most recent developments in flat panel displays?
The speed at which flat panel displays can change colour has been a limitation on
their use until now [30]. Recently, a new type of display, the electrochromic cell,
has been reported that overcomes many of the limitations [31]. In this device two
metal films form the positive and negative electrodes. The negative electrode is
coated with titanium dioxide and then with methyl viologen molecules, which
form a blue colour when electrons are added. The positive electrode is coated with
tin oxide doped with antimony and then with phosphonated phenothiazine
molecules, which turn red when electrons are removed. These electrochromic cells
can be switched in 250ms using a potential difference of 1.2 volts.

12.6 OPTICAL DISKS FOR DATA STORAGE
How does a DVD work?
The digital versatile disk, now known universally as the 'DVD', became widely
available in 1996. A complete range of DVDs are now available including video,
audio, ROM (for software) and RAM (for general data) [32]. The original
application for DVDs was in the home video market. This application, therefore,
dictated the capacity of 4.7 Gbyte and the playback time of 135 min, at a data rate
of 5 Mb/s (0.58 MB/s) [33]. The DVD-ROM functions in much the same way as
the CD-ROM whereby pits are embossed on the surface of the disk. These pits are
typically five times more dense on the DVD-ROM, which can actually store about
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seven times as much data as a CD-ROM. However, DVD media are more
expensive than CD media and this can be a barrier to use. Therefore reduction in
cost is desirable to make them more commercially competitive.
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13 SUPERCONDUCTIVITY AND
SUPERCONDUCTING MATERIALS

OBJECTIVE

The main objective of this chapter is to give an overview of superconductivity
which includes a description of the basic observations of the phenomenon and
an indication of the principal applications. We discuss the emergence of super-
conductivity in certain materials and how these materials are used in four main
groups of applications: superconducting solenoids, superconducting magnet-
ometers (SQUIDs), superconducting logic devices and superconducting power
electronics devices. Both flux pinning by a superconductor and the Meissner
effect are explained, together with the differences between Type I and Type II
superconductors. The onset of superconductivity is discussed as a discontinuous
reduction in conductivity to a state with zero dc resistance. It is shown that the
resistanceless state is insufficient to explain the Meissner effect in which mag-
netic flux is completely excluded from the bulk of a superconducting material.
Conditions for establishing the presence of superconductivity are given.

13.1 QUANTUM EFFECTS IN ELECTRICAL CONDUCTIVITY
Which are the areas in which quantum effects radically alter the electronic
properties of materials on the bulk scale?
By quantum electronics we mean any electronic behaviour where quantum effects
make their presence felt. Of course, we can argue that all electronics is quan-
tum electronics. So here we are interested only in those effects where the quantum
description is very different from the classical description. Superconductivity, the
apparently complete loss of resistivity in some materials at low temperatures, is
a quantum phenomenon with no adequate explanation on the classical scale.
It results in the passage of an electric current in a material without a potential
difference to drive it. We shall consider how this can be used for particular func-
tions. In fact, there are several areas of use: superconducting magnets, supercon-
ducting detectors (SQUIDs), and superconducting devices for electronics. Other
applications include superconducting light detectors and superconducting devices
for generation storage and transmission of electrical energy.

13.1.1 Reduction in resistance on cooling
What happens to the resistance of a material when it goes superconducting?
Superconductivity was first discovered in mercury by Kamerlingh Onnes. The metal
exhibited a very rapid reduction in resistivity at 4.2 K, as shown in Fig. 13.1. The
fact that the resistivity is very low (typically < 10~25 il m) is a necessary but insuf-
ficient condition for the existence of superconductivity. We, of course, expect a
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Pt

temperature 7 (K)

Figure 13.1 Variation of resistance with temperature in mercury and platinum. The superconduct-
ing transition in mercury begins at about 4.26 K as the material is cooled. In platinum,
which exhibits conventional behaviour, the contributions to resistivity include impurity
or defect scattering which is represented by the resistivity at T = 0, and phonon
scattering which is temperature dependent and represented by p(T) - p(0).

reduction of resistivity as a result of the reduction of lattice vibrations which in turn
reduces the amount of phonon scattering of electrons. However, impurity scatter-
ing should continue even at the lowest temperatures and so a residual resistance to
the motion of electrons is expected on the basis of classical theory. The reduction
of resistivity observed in normal conductors is a continuous process, whereas in
superconducting materials there is a sharp phase transition between the normal
and superconducting states. Superconductivity therefore involves something else.

13.1.2 Superconductivity
How do we recognize the existence of superconductivity?
The two essential criteria for determining the existence of superconductivity are,

(i) Complete disappearance of resistivity below a critical temperature Tc.
(ii) Exclusion of magnetic flux from the body of a superconductor - the Meissner

effect.

The first condition means that an electric current continues to flow even in the
absence of an applied voltage. A further observation is that there exists a critical
applied field Hc above which the material is driven 'normal.' This critical field is
temperature dependent and becomes zero at the critical temperature Tc.

13.1.3 Nature of the superconducting transition
What are the principal changes in material properties that are observed as a result of
superconductivity ?
The onset of superconductivity leads to some quite dramatic changes in prop-
erties. The following list indicates some of the major observations:

• There is a discontinuous reduction in resistivity.
• In the superconducting state there is a different conduction mechanism.
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• AC (eddy current) losses remain, even though there are no dc losses
• Resistivity is more than 13 orders of magnitude lower than the best high-purity

annealed copper, 10~25nm in a superconductor compared with 10~12f2m in
high-purity copper and 10~8íím in normal copper used for conducting wires.

• There is a critical temperature Tc above which the material reverts to normal
conducting behaviour.

• There is a critical field Hc above which the material reverts to normal
conducting behaviour.

The critical field strength and the critical temperature are related by an equation
of the form

Hc = H0(l - T2/TC
2), (13.1)

where H0 is the critical field strength at 0 K.
Below the transition temperature the material has zero resistance unless the

current passing through it becomes too large (i.e. reaches the critical current
density /c) in which case the coupling between the electrons is destroyed and the
material returns to its normal resistive state.

Table 13.1 Critical temperatures and critical fields for superconducting elements.

Material

Aluminium
Cadmium
Indium
Lead
Mercury
Niobium
Tantalum
Tin
Zinc
Zirconium

Critical temperature (K)

1.2
0.5
3.4
7.2
4.2
9.3
4.5
3.7
0.9
0.8

Critical field

7.9
2.4

22
64
33
Type II
66
24
4.2
3.7

(kA/m)

13.2 THEORIES OF SUPERCONDUCTIVITY
How can superconductivity be explained?
Over the years there have been three main theories of superconductivity, the two-
fluid model of Gorter and Casimir, the electrodynamic theory of London and
London and the paired electron theory of Bardeen et al. [1]. Here we will discuss
only explanations arising from the last of these.

In normal metals individual electrons are scattered by impurities and by
phonons. This causes resistance in the material to the passage of electrons which
results in macroscopic resistivity, as described in Chapter 2. Under certain
conditions, however, the electrons at energies near the Fermi level, which are the
electrons which contribute to the conductivity, can couple together. These
electrons then move throughout the solid as a coherent group without scattering.
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Under these conditions the phonons and impurities are too weak to scatter the
electrons and so the electric current once started moves through the material
without experiencing resistance. In the Bardeen-Cooper-Schrieffer (BCS) theory
the electrons are paired with opposite spins and opposite wave vectors which
results in no net spin and no net momentum. These 'Cooper pairs' are not
scattered by the normal mechanisms because their combined wave vector k is zero,
corresponding to an infinite wavelength.

13.2.1 Conditions for superconductivity to occur
Why does superconductivity not occur in all materials?
In order for superconductivity to arise there should not be too many normal
conduction electrons around to conduct the current, since unpaired 'normal'
electrons will get in the way of the paired superconducting electrons. In addition,
the thermal energy must be so low that superconducting electrons do not get
decoupled. Therefore superconductivity occurs at low temperatures in materials
with a low density of states at the Fermi level.

If the temperature is raised, lattice vibrations begin to disrupt the interactions
between the coupled electrons until, at a critical temperature Tc, the lattice
vibrations completely destroy the coupling. The superconducting electrons then
revert to their normal state. The thermal energy needed to decouple the electrons
is determined by the superconducting energy gap. For an energy gap of 10~3eV
this gives a critical temperature of a few Kelvin, which is typical of many
superconducting materials as shown in Table 13.1.

Therefore, it can be seen that the superconducting state will be disrupted and
cease to exist at higher temperatures, with the value of the transition temperature
being different for different materials depending on the strength of the coupling
between the superconducitng electrons. Furthermore, since strong interaction be-
tween conduction electrons and the lattice is a prerequisite for superconductivity,
it follows that metals such as copper, silver and gold, which are good conventional
electrical conductors (and therefore have weak interactions between the conduc-
tion electrons and the lattice), do not exhibit superconductivity.

13.2.2 The Meissner effect
How does a superconductor respond to an external field?
When a magnetic field is applied to a superconductor it has the effect of destroying
the superconductivity above the critical field Hc. In this case the material will again
revert to its normal resistive state. At lower field strengths the superconducting
material may completely exclude the magnetic field, a phenomenon known as the
Meissner effect. This is shown schematically in Fig. 13.2.

In this case the superconducting electrons set up circulating currents at the
surface of the material which counteract the applied field and so cancel the field
exactly to zero within the material. In some superconductors, known as Type II
superconductors, there also exists a state at intermediate field strengths in which
the field penetrates local regions of the superconductor. This field penetration is
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Figure 13.2 Diagram showing flux exclusion from the superconducting material once it has
undergone a superconducting transition.

through flux tubes of normal material embedded in a matrix of superconducting
material. This state is known as the 'mixed' or Vortex' state.

13.2.3 Type I and type II superconductors
Is the transition to the superconducting state continuous or discontinuous when a
magnetic field is applied ?
Superconductors fall into two categories based on the mechanism of the transition
from superconducting to normal state in the presence of a magnetic field. These
are known as type I and type II superconductors.

Type I superconductors exhibit only two phases: normal and superconducting.
The transition between these phases is very sharp and occurs at a particular critical
field strength Hc. Most pure metals are type I superconductors.

Type II superconductors exhibit an intermediate phase known as the 'mixed' or
'vortex' state. This state exists at field strengths between Hci, the critical field for
transition to the superconducting state, and HC2 , the critical field for transition to
the normal state. In this intermediate state the material consists of a honeycomb
structure of normal material within a superconducting matrix. Lines of magnetic
flux that cannot penetrate the superconducting material because of the Meissner

Figure 13.3 Flux lines in a superconductor in its mixed state. The tubular regions are normal material
with magnetic flux penetration. The remaining matrix is superconducting material.
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effect, can enter through the normal material. Each 'vortex' of normal material
carries one flux quantum of 2.07 x 10~15 Wb.

Most alloys are type II superconductors. The matrix of flux vortices in the
material of a type II superconductor in its intermediate mixed state is shown in
Fig. 13.3. The tubular regions are where the magnetic flux quanta emerge perpen-
dicular to the surface through the normal material. The other regions are the
superconducting material.

13.2.4 Flux pinning and flux exclusion
Is a superconductor merely a perfect conductor or is there a greater significance to
the Meissner effect?
For some years after the discovery of superconductors, it was assumed that the
behaviour of such a material in the presence of a magnetic field would be as shown
in Fig. 13.4. That is to say, the supercurrents would prevent any change in the flux
(f) passing through the material because by the Faraday-Lenz law of electro-
magnetic induction they would set up an induced current. In a perfect conductor

Room
temperature

Cooled

Ba
Low

temperature
with field

Ba

Low
temperature
without field

Figure 13.4 Diagram showing the expected behaviour of a 'perfect conductor' in the presence
of a field.
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this induced current should produce an opposing flux change which exactly
counteracts the flux change producing it. In fact, the situation is quite different
inside a superconductor in its superconducting state. The magnetic flux (/) is zero,
except for a thin boundary layer at the surface. (We must note immediately that
this condition is not exactly fulfilled in the mixed state because of the prescence of
normal material.) The Meissner effect does, however, demonstrate that the super-
conducting state is something more than just a state with perfect conductivity,
since the exclusion of flux is an additional property that a merely resistanceless
material would not possess.

13.2.5 Surface currents and the Meissner effect
How can we explain the Meissner effect?
When a superconductor is cooled in a magnetic field persistent currents arise on
the surface of the material at the critical temperature and these circulate so as to
exactly cancel the flux density inside. The surface supercurrents are determined
only by the strength of the external prevailing magnetic field.

Room
temperature

Cooled

Low
temperature

with field

Low
temperature
without field

Figure /3.5 Equivalent behaviour of a superconductor (compare with Fig. 13.4) which exhibits the
Meissner effect or flux exclusion.
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The emergence of the surface currents when a material is cooled through its
superconducting transition lies beyond the concept of 'perfect' conductivity.
In order not to get an infinite current density, these surface currents must exist
over a finite depth. In fact, the surface currents decay exponentially with depth,
and this means that the magnetic field does penetrate at the surface of the super-
conductor to some extent. This is expressed by the penetration depth A. Typical
penetration depths in superconductors are 10~8m. Some values are shown in
Table 13.2.

Table 13.2 Penetration depths in superconductors. Material

Aluminium
Cadmium
Lead
Niobium
Tin

Penetration depth
A(IO~8m)

1.6
1 1
3.7
3.9
3.4

13.2.6 Flux pinning in a superconducting circuit
What happens when a magnetic flux passes through the middle of a circuit of
superconducting material?
We know that the Meissner effect leads to the exclusion of magnetic flux passing
through the body of a superconducting material. A related phenomenon is flux
trapping through a superconducting circuit, as shown in Fig. 13.6.

If we have a toroid of superconductor with a flux 0 passing through the circuit
as shown, then the flux passing through the circuit cannot change. The reason lies
again in the Faraday-Lenz law of electromagnetic induction which states that any
change in flux linking a circuit d0/d¿ sets up a counteracting current in the circuit.
In the case of a superconductor, this current produces a flux which exactly

(a) (b)

Figure 13.6 Flux trapping by a closed circuit of superconductor: (a) flux driven through a ring of
normal material by an applied field; (b) flux trapped by the ring when the ring goes
superconducting and the applied magnetic field is subsequently removed.
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counteracts the flux change producing it. This is the principle behind the SQUID
(superconducting quantum interference device), which is used for measuring
changes in magnetic flux to extremely high resolution.

13.3 HIGH-TEMPERATURE SUPERCONDUCTORS
How have the ceramic superconductors altered the perspective for applications of
superconducting materials?
General awareness of superconductors was raised by the discovery of materials
which are superconducting at temperatures above 77 K. Until early 1986, the
highest known critical temperature for superconductors was 23.2 K in NbGe, and,
in fact, over the previous 75 years the critical temperatures of superconductors
had been raised only very gradually.

Rapid developments in superconductivity began with Bednorz and Muller [2]
who discovered that La-Ba-Cu-O is superconducting at 30 K. Within a year an alloy
of Y-Ba-Cu-O had been found with a Tc of 95 K and within two years an alloy of
Th-Ba-Ca-Cu-O with Tc of 125 K had been discovered. These discoveries were
of great scientific interest because they have raised the possibility of finding a room-
temperature superconductor. Also, there has been renewed interest in research in
two areas: (i) development of new superconductors and (ii) theoretical explanation
of the conduction mechanism in these superconductors.

The ceramic superconductors have naturally received much attention in recent
years because their high critical temperatures offer a number of possibilities for
applications in practical devices. Much of the attention has been directed towards
two of these superconductor materials, specifically Y-Ba-Cu-O ('YBCO') and
Bi-Sr-Ca-Cu-O ('BSCCO'). The former is usually studied at the chemical compo-
sition YBa2Cu3Oy and is of interest because of its high critical current density. The
latter has been studied in a variety of different chemical compositions and is of
interest because it can be fabricated in the form of long wires and tapes.

13.3.1 Critical current density and critical field strength
What range of critical current densities and critical field strengths have been found?
In ceramic superconductors the critical field strength is generally extremely high
and has been estimated in one case at Hc = 3 x 106 Oe (0.24 x 109 Am""1). The
critical current densities /c of several 'high-temperature' ceramic superconductors
are shown as a function of temperature in Fig. 13.7.

The critical current density /c for YBCO is 40 kA/cm2 at 77 K compared with
5kA/cm2 for BÍ2Sr2Ca2Cu3O8 ('BSCCO-2223') [3]. YBCO can have even higher
critical current densities when deposited in thin films on a substrate. For example,
when deposited on sapphire (A12O3) using a CeO2 buffer layer a/c of 3 x 106 A/cm2

has been observed at 77 K in a film of thickness 200 nm. This compares with a /c

of 0.2 x 106A/cm2 when deposited directly on sapphire [4].
For the production of wires and tapes of superconductor BSCCO-2223 is

currently the material of choice. It is formed into wires using the 'powder in tube'
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Figure 13.7 Dependence of critical current density on temperature in various ceramic super-

conducting materials [3].

method whereby it is packed inside tubes of silver, or silver alloy matrix, after
which the tube is deformed by drawing and rolling to produce long lengths of
wire. Lengths of BSCCO-2223 in excess of 1 km can be produced by this method.
Consequently, BSCCO continues to be used for wires; however, the material is
more susceptible to the presence of external magnetic fields than other materials
such as YBCO, and in this respect, and also because of its lower critical current
density, it is presently considered to be less desirable than YBCO for most
applications.

13.4 APPLICATIONS OF SUPERCONDUCTORS
What are the major technological applications of these materials?
The major applications of superconductors can be categorized into the following
main areas: (i) generation of high magnetic fields using superconducting solenoids,
(ii) high-resolution detection of magnetic flux using superconducting quantum
interference device magnetometers (SQUIDs), (iii) small low-power electronic
devices based mostly on the Josephson effect and (iv) power generation, storage
and transmission. The basic science and engineering of superconductivity has been
dealt with by Orlando and Delin [5], in which superconducting junctions and
devices are discussed. Another useful guide to engineering applications of super-
conductivity is the work by Doss [6], which although ultimately directed towards
ceramic superconductors, nevertheless also contains a detailed general discussion
of applications of superconductivity. The discovery of ceramic superconductors
with critical temperatures above the boiling point of liquid nitrogen has affected
each of the main areas of application.
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13.4.1 Superconducting solenoids and magnets
How are superconducting materials used to produce high magnetic fields?
One of the principal applications of superconductors is in the generation of
high-intensity, high-stability magnetic fields for both scientific investigations and
medical applications such as magnetic resonance imaging (MRI). In this case,
superconducting wires need to be fabricated to form the coils of the solenoid.
These wires usually consist of niobium-titanium or niobium-tin in a matrix of
copper which is extruded into a wire about 0.5 mm in diameter. These multi-
filament wires are shown in cross section in Fig. 13.8.

In magnetic resonance imaging for medical diagnostics the magnetic moment of
the nucleus can be detected through nuclear magnetic resonance. The resonant
frequency of a particular nucleus is dependent on its mass and the field strength it
is subjected to. The resonance can be caused by using an rf coil with an adjustable
excitation frequency and detected by using a pick-up coil.

A field gradient is normally used to determine the spatial locations of the nuclei.
The measured resonance frequency indicates the field strength which a particular
nucleus experiences. From a three-dimensional map of the field strength over a
given volume, the location of the nucleus within that volume can be found. In this
application it is essential to have a strong magnetic field which is stable and pre-
cisely controllable over the working volume. A high field strength is advantageous
because it gives a higher resonant frequency and therefore a stronger signal-to-
noise ratio. In this type of instrument the superconducting magnet is therefore a
critical component.

Superconducting magnet systems which can generate magnetic flux densities of
up to B = 15T (H = 12 x 106 Am, or 150kOe in free space) have been available
for many years. The wires which are used to make the coils of the superconducting
solenoid can carry much higher current densities than conventional conductors.
For example, in niobium-tin the critical current density, which provides an upper
limit to the current density the material can sustain before making a transition to
the normal or resistive state, is typically lOMAcm"2 (1011 Am~2).

Figure 13.8 Cross section of a superconducting wire consisting of a superconductor in a metal matrix.
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13.4.2 Superconducting magnetometers
How can superconducting flux pinning be used to develop high-sensitivity
magnetometers ?
In a superconductor-insulator-normal metal (SIN) junction, quantum-mechanical
tunnelling of the electrons across the energy barrier presented by the insulator can
occur provided the insulating layer is sufficiently thin. This can be compared with
tunnelling of electrons into a finite potential barrier as discussed in Section 4.3.2.
Single-electron tunnelling was first demonstrated by Giaever [7]. Later, Josephson
[8] predicted that in a superconductor-insulator-superconductor (SIS) junction,
quantum-mechanical tunnelling of Cooper pairs could occur with a higher
probability than had been generally recognised before. This effect was demon-
strated experimentally by Anderson and Rowell [9].

When two such SIS or Josephson junctions are connected in parallel there is a
quantum interference between the electron wavefunctions. This leads to an
oscillatory variation in the voltage across the device with magnetic flux linking the
circuit. This can be used as a high resolution flux-counting device known as a
superconducting quantum interference device (SQUID). SQUID magnetometers
can be used to measure changes in flux down to 2.07 x 10~15 Wb. They are now
used in medical diagnostics, mineral surveying, submarine detection, motion
detection, materials evaluation and scientific measurements [10].

If we consider first a superconducting circuit enclosing a flux 0, as shown in
Fig. 13.9 then there will be an outer supercurrent /0 which exactly compensates
the external field in order to prevent flux passing through the superconducting
material. This outer current does not depend on the field exposure history, it
depends only on the external field strength, that is it depends entirely on the
prevailing conditions. In order to maintain the flux through the hole in the centre

Phase difference
across weak link

Supercurrent ̂

Magnetic flux
<j) linking curcurt

Figure 13.9 Arrangement of a circuit of superconductor with a weak link to form a Josephson
junction.
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of the toroid there must be an inner current i\ which depends on the field exposure
history of the toroid. This current is determined by the amount of flux that was
passing through the circuit at the time the material became superconducting.

The relationship between the flux density threading the superconducting circuit
and the flux density of the applied field is

B = Ba + ̂ , (13.2)

where Ba is the flux density of the applied field, /s is the total superconduct-
ing current, L is the inductance of the ring, and A is its cross-sectional area. The
supercurrent /s is related to the critical current Jc which is determined by the prop-
erties of the weak link:

/ s=/csin0, (13.3)

where 6 is the phase difference of the electron wavefunction across the weak link.
Therefore, we can write the relationship between the flux densities as

B=Ba+^Icsm6. (13.4)A
If we have a completely superconducting ring, then the flux through the ring

must be an integral number of flux quanta

0 = N0o, (13.5)

where N is an integer and </>0 is a flux quantum. With the weak link or Josephson
junction in the circuit the phase angle 0 depends on the flux in the following way,

0 = 27rN-27T^-, (13.6)
00

and since N is an integer we must have

sin(9 = sinlTrf N - -^ ) (13.7)
V 0o /

= -sm(27r— ) (13.8)
V 0o 7

so that

B=*a-^/csin(^Y (13.9)
A V 0o 7

This means that each time 0 equals an integral multiple of 2.07 x 10~15 Wb, the
flux density in the ring is equal to the flux density of the applied field. However, at
intermediate values of flux a supercurrent flows in the superconductor. This
supercurrent is determined by the flux entering the ring and it can be measured.
If a loop of wire is wound on to the superconducting ring, then the voltage induced
in the loop is a periodic function of the flux linking the circuit. This can therefore
be used to count the changes in flux quanta.
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13.4.3 Principles of operation of a SQUID
How does a SQUID count the flux changes?
If we now consider the situation depicted in Fig. 13.10, a current / flows through
the two paths of the interferometer device. We assume that the device is sym-
metric so that 1/2 flows through each arm of the device.

Assuming / < 2/c then we will have a phase angle across each weak link as
described above. Now suppose a flux (f> is introduced into the loop. This will cause
a superconducting current /s, which will add to the existing current in one arm but
subtract from the current in the other arm. The phase angles across the the two
weak links will be 0 + 6 and 0 — 6 so that

i/ + /s=/csin(0 + i), (13.10)

\ I - /s = /c sin(0 - 6). (13.11)

Summing these currents gives,

/ - /c[sin(<9 + 6) + sin(0 - 6)] (13.12)

= 2/c sin 0cos 0, (13.13)

Figure 13.10 Electrical circuit showing connection of two Josephson junctions to form a SQUID.
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and the total change of phase across the two weak links is 26 which must equal
2?rN - 27T0/00, so that

6 = 7rN-^ (13.14)
00

where N is an integer as before. Therefore

/ = 2/ccos(TrN)cos(^] sin0. (13.15)
\<?W

Therefore as the flux is increased the current varies periodically with flux, and
hence so does the voltage V across the device, as shown in Fig. 13.11. The period
is one flux quantum </>o, so the device can be used to count flux quanta. Note, how-
ever, that in practice the current never changes direction, as the above equation
seems to imply. This is because the electron pairs adjust their phase to ensure that
the current / is always flowing in the same direction. Note that the device measures
changes in magnetic field rather than the absolute value of magnetic field. The
device can therefore be used to count the number of flux quanta which enter
the ring.

A SQUID magnetometer without Josephson junctions was proposed by Fink
et al. [11]. In this device the supercurrents in the two parallel branches of the
device result in a critical current which varies in an oscillatory way with magnetic
flux linking the circuit. Moshchalkov et al. [12] have shown that this quantum
interference does occur in a superconducting loop of length no greater than the
Cooper pair coherence length, which is typically a few micrometres and is much
smaller than the length of loop used in a conventional SQUID.

Voltage
across SQUID V

A

n+ 1

Normalized flux

n- 1

or number of quanta

Figure 13.1 1 Variation of the voltage across a SQUID with the number of flux quanta in the
external field attempting to pass through the ring.
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This leads to cyclic variation in the voltage across the loop as a function of
magnetic flux linking the loop. The mechanism of the interference in these
mesoscopic loops is quite distinct from the effect observed in Josephson junction
devices. However, there are some similarities in performance. Regions of low
density of Cooper pairs, which are analogous to the weak links in the Josephson
junction devices, occur periodically in these mesoscopic loops at half-integer
flux quanta as a result of the effects of shielding and transport currents in the
loop. The phase coherence of electrons in the loop ensures that when the 'pseudo
weak link' appears in one branch of the loop it must simultaneously occur in the
other branch.

There is a long-term prospect for the development of electronic circuit elements
based on the critical current oscillations in these mesoscopic loops. However, there
are significant practical problems to be overcome. Specifically, in order to observe
the effect temperatures below 1 K are required with voltages of less than 0.1 mV.
The response of the device is also very sensitive to changes in sample configuration.
For example, the interference pattern can be changed even by moving a single
impurity in the device.

13.4.4 Developments and applications in SQUID magnetometers
Where are SQUIDs used and how are they being improved?
SQUIDs provide the most sensitive field detectors in the range 0.1-100 Hz. They
are widely used for measuring low-level, low-frequency magnetic fields. Examples
of their use can be found in biomagnetism and medical diagnostics, where they are
used to detect magnetic field fluctuations produced by the brain and the heart.
Other examples of their use are found in nondestructive evaluation where small
changes in magnetic fields can be caused by structural changes and degradation in
materials [13].

A low-noise SQUID gradiometer for measurement of biomagnetic fields has
been developed by Lee et al. [14]. This device incorporates a planar thin film pick-
up coil integrated onto the same substrate as the SQUID. As a result, it has a flux
noise level of 4 x 10~6 flux quanta per Hz~1/2 corresponding to a field gradient
noise of lO'^Tm"1 Hz~1/2, which is suitable for the measurement of the
magnetic fields generated by neurons in the body.

13.4.5 Superconducting electronic devices
Can superconducting switching effects be used to construct logic devices for
computers?
We consider now 'electronic' or low-current applications as distinct from 'elec-
trical' or high-current applications of superconductors. In these applications the
electronic characteristics of the superconducting junctions perform traditional elec-
tronic functions, although in many cases with improved performance over conven-
tional (i.e. nonsuperconducting) materials. For example, superconducting devices
are often faster, or can operate at higher frequencies, or have lower losses than
conventional materials.
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Along with the change in resistivity of superconductors other equally dramatic
changes can occur in the electronic properties. This includes single-electron
tunnelling in which electrons tunnel through a thin insulating layer between a
superconducting material and a normal material known as an SIN junction. The
Josephson effect [8] is a related phenomenon in which a coupled pair of electrons
(a Cooper pair) passes from one superconducting region to another through a thin
insulating layer known as an SIS junction. This effect can be used to construct
devices which can change from one electrical state to another in very short times.
This offers the opportunity for constructing logic devices and small computer
circuits which operate very rapidly, with switching speeds that can be up to 10- to
100-times faster than conventional silicon devices.

The main electronic device and circuit applications of superconductors are
broadly in the following areas: radio frequency and microwave devices (such as
filters, resonators and phase shifters); high-speed digital logic devices and circuits;
low-noise, high-frequency analogue devices (for example components for high-
speed oscilloscopes); thin film devices; hybrid superconductor/semiconductor
devices and circuits; and optical detectors. These various applications of super-
conductors have been discussed in detail by Van Duzer and Turner [15], and by
Ruggiero and Rudman [16].

Ralston et al. [17] have given a review of developments in low-current device
applications of superconductors. In work performed under an industry-university
consortium for superconducting electronics, four main areas of interest have been
explored: (i) materials and processing, (ii) superconducting junctions, (iii) net-
works and (iv) circuits.

In materials and processing it was necessary to develop large-area substrates in
order to prepare the thin films. This meant that both the lattice parameters and the
thermal expansion coefficient of the substrate should match those of the thin film.
The main candidate materials are neodymium gállate (NdGaO3) and lanthanum
alumínate (LaAlC^). The deposition of the thin films of superconductors onto the
substrates can proceed by one of several methods including sputtering, coevapora-
tion in vacuum, laser ablation, molecular beam epitaxy (MBE), and organometallic
deposition.

Materials which are receiving much attention for thin film devices are
the yttrium-barium-copper oxide material (YBaiCusO* or 'YBCO'), thallium-
barium-calcium-copper oxide (TIBaCaCuO or 'TBCCO') and bismuth-strontium-
calcium-copper oxide (BiSrCaCuO or 'BSCCO'). Another material which is being
investigated is barium-potassium bismuthate (BaK)BiO3 which has a very long
coherence length, that is the range over which electrons states are correlated.
In addition its electronic properties are isotropic. These characteristics make the
material a good candidate for devices based on tunnelling effects and junctions,
despite its comparatively low critical temperature of 3OK.

A prototype junction device using thin films of ceramic superconductor was
developed and this is shown in Fig. 13.12. This is a Josephson junction device
made from YBCO thin films which are separated by a layer of praesodymium-
barium-copper oxide PrBa2Cu3CKc. The films were grown with the copper oxide
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YBCO smo3
PBCO bridge section

Figure 13.12 Schematic diagram of a thin film Josephson junction using ceramic superconducting
YBCO.

planes parallel to the substrate surface, giving the highest critical current density in
this direction. The step structure of the films is arranged to ensure that the weak
link is also in the direction of maximum coherence length. This geometry there-
fore optimizes the performance of the device.

In the area of networks, the superconductors can be used to interconnect
between semiconductors. The superconducting thin films have low resistivity at
microwave frequencies and so low-loss compact microwave filters can be made
from them. For example, at 77 K and 4 GHz an YBCO filter has losses which
amount to only 25% of an equivalent filter fabricated from silver. The high-perfor-
mance superconducting microwave filters can have Q values of better than 1000,
compared with Q values of 250 in filters fabricated from normal metals operating
under similar conditions.

Low-noise SQUIDs can be made using a three-layer process employing
niobium-aluminium oxide-niobium films. These are produced by sputtering
followed by a planarization process similar to that used in the production of
silicon devices (see Section 11.4.3). Devices such as SQUIDs, gradiometers and
oscillators can be fabricated with junction areas as low as 0.77 um x 0.77 urn.

Light interacts with materials via the electrons. We have already considered this
interaction in semiconductors and normal metals. The electrons in super-
conductors are sensitive to light with photon energies as low as 0.01 eV and so
superconducting materials can be used as photodetectors. These applications have
been discussed by Richards and Hu [18].

13.4.6 Applications of superconductors in power electronics
How can superconductors be used in electrical energy conversion and transfer?
One of the main applications for which superconductors seem to hold great
promise is in the efficient generation, storage transmission and conversion of
electrical energy. However, this prospect seemed far from realization until the
discovery of the ceramic 'high-temperature' superconductors. The main benefit
that these materials bring is that their critical temperatures are above that of liquid
nitrogen, which opens up the possibility of a relatively cheap means of cooling the
materials into their superconducting state.

Now that these superconductors can be fabricated into long lengths of wire or
tape the prospects for practical power electronics applications seem much nearer.
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In principle, these materials can be used to construct more compact and energy-
efficient devices for (i) fault current emitters, (ii) electric power generators,
(iii) motors, (iv) transformers, (v) power cables, and (vi) energy storage devices.
However, there are still significant improvements that need to be made in the
materials and a number of technical problems to be overcome before the materials
are likely to see widespread implementation in power electronics devices.

Superconducting motors and generators should have typically only half of the
power losses of conventional copper wire equivalents [19]. Energy-storage devices
include superconducting magnetic energy storage systems ('SMES') and rotating
flywheel type devices that can be used to store electrical energy during off-peak
periods and then return the energy to the power grid during times of peak demand.
These will enable the power grid to become more robust in handling large
fluctuations in power demand [20,21], which has caused some major problems in
regions with high energy consumption. Energy-conversion and energy-transmis-
sion devices including superconducting transformers, with reduced size and weight
and increased capability for over-capacity operation, and superconducting cables
with higher current-carrying capabilities and lower power losses have been
developed to the prototype stage.

However, despite all of the attractive potential applications, there are still a
number of unanswered questions. The superconducting materials suffer from ac
losses and the materials themselves are still relatively expensive. This means that
their usage involves significant initial capital investment. Also, while reducing the
power losses in some devices by half may sound impressive, the economic benefits
may not be sufficient to justify implementation if the conventional devices are
already above 99% efficient, as is the case with transformers.

13.4.7 High-capacity superconducting wires and cables
How can superconductors be used to produce low loss electrical wires and cables?
Transmission of electric power with high efficiency through superconducting
wires or cables without resistive losses has obvious attractions if the cost of
keeping the materials cool can be made low enough to realize a net improvement
in overall energy efficiency. With increased interest in the transmission of power
through superconducting wires and cables the nature and magnitude of the ac
losses becomes a significant concern for the optimization of device designs.

Progress in producing superconducting wires and tapes has been reasonably
good in recent years. BSCCO tapes have been produced with a critical current of
80 A in a cross section of 4 mm x 0.4 mm [22]. Modelling of the ac losses in
BSCCO has been demonstrated [23], in which it was shown that the conventional
critical state model of Bean [24] was not applicable to this material. The model of
Tami et al. allowed the field and current profiles inside the tapes to be calculated,
and from this the power loss was determined by integrating throughout the
material. This showed that for current densities well below the critical current
density, the ac losses were mainly hysteretic, whereas when the current density
approaches the critical value /c flux creep and flow dominate the loss mechanism
as the material approaches a resistive state.
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Figure 13.13 Two possible configurations for superconducting cables: (a) the warm dielectric and
(b) the cold dielectric [22].

Superconducting cable designs seem to be converging on two possible configur-
ations. These are the so-called 'warm dielectric' and 'cold dielectric' configurations
[22] as shown in Fig. 13.13. The warm dielectric configuration can carry more than
twice the power of conventional copper cable with the same losses. The cold
dielectric configuration can carry four times the power at only two thirds of the
losses. The warm dielectric configuration is designed to allow retrofitting into
existing tunnels and pipes, thereby minimizing the initial investment costs, whereas
the cold dielectric configuration, while more energy efficient, cannot be so easily
retrofitted. In either case, the resulting superconducting cable network will need to
be completely compatible with existing components and must be at least as reliable
as existing cable networks.

13.4.8 Superconducting transformers
How can superconductors be used in energy conversion devices such as
transformers?
Current densities in superconductors that are 10-100-times greater than in cop-
per wires, together with zero dc resistance, mean that there are possibilities for
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dramatic improvements in transformer size, weight and performance. Again, the
ability to produce long lengths of superconducting wire was crucial to the appli-
cation, but now that this has been overcome, prototype superconducting trans-
formers have been built and tested.

Conventional transformers in the 30MVA range are already typically 99.3 to
99.7% efficient. Even so, the transformer losses amount to about 2 x 109 $/yr in the
US and account for about one quarter of the transmission and distribution power
losses. Most of this loss is caused by resistive heating in the windings, as opposed
to magnetic losses in the core. So replacement of these with superconductors
would appear to be an appropriate way to make further improvements in energy
efficiency. Compared with resistive and eddy current losses in conventional
transformers the losses in superconducting transformers are small. However, this
is not the only factor to be taken into account since power is also needed to keep
the windings cool and this reduces the overall efficiency of the superconducting
transformer.

Consequently, the prototype superconducting transformers that have been built
to date are no more efficient overall than conventional transformers. The 500-
kVA unit made by Sumitomo using BSCCO 2223 wires had an efficiency of 99.1%
at 77 K and 99.3% at 66 K [3], which is comparable to conventional transformers.

Open-cycle cooling with liquid nitrogen is cheapest but can be inconvenient due
to the necessary continuous maintenance. Closed-cycle cooling using cryocoolers
may be more acceptable in the long run. In either case the refrigeration technology
will need to be developed to ensure rugged, reliable, low maintenance, cost-
effective superconducting transformers.

13.4.9 Superconducting motors and generators
Can superconductors be used to produce more efficient motors and generators?
Superconducting motors and generators offer some energy-efficiency improve-
ments over conventional devices. For example, a 3.7-MW motor with conven-
tional windings has an efficiency of about 96%. A motor of the same power rating
using superconducting windings has an efficiency of 98%. Of course, the power
needed to maintain the windings in their superconducting state also needs to be
considered. This would amount to a reduction in efficiency of about 0.1% at 77 K
and 0.3% at 30 K resulting in net improvements in energy conversion efficiency of
1.9% and 1.7%, respectively, over a conventional motor [25].

13.4.10 Superconducting devices for energy storage
Can superconductors be used to store electrical energy?
The temporary storage of electric power, over periods of less than 24 h, would
allow energy to be accumulated during times when the electric power grid is
under-utilized (for example during the night) while allowing utilities to draw on
these reserves during times of peak demand. Two classes of superconducting
devices have been designed to provide such storage: superconducting flywheels
and superconducting magnetic energy storage systems (SMES).
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Superconducting bearings, using a combination of permanent magnet and
superconductor and based on the Meissner effect, can reduce frictional losses by
up to two orders of magnitude compared with the best mechanical bearings. With
such superconducting bearings it is possible to reduce idling losses to 0.1% per
hour, allowing daily storage efficiencies of about 90% [20]. Designs for super-
conducting flywheels based on YBCO and storing up to lOMWh have been
proposed. At present the experimental versions of these devices are in the range
of 1 kWh.

Energy storage can also be achieved using large superconducting coils. Smaller
versions of this, the so-called 1SMES (microSMES) have recently become available
commercially for ensuring quality control of power variability to sensitive electric
loads. Design studies for optimization of the 1SMES have recently been reported
for a 0.7-MJ version of the device [21].
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14 MAGNETIC RECORDING

OBJECTIVE

In this chapter we look at the various magnetic methods available for recording
of information, images and sound. The most important of the recording media
today are magnetic disks which provide the main method for storing
information on computers, and magnetic tapes which are widely used for
both audio and video recording. Magnetic recording can be conveniently
separated into two groups of related technologies: media and recording heads.
'Media' consists of all technologies concerned with the production and use of
magnetic disks and tapes for storing information, while 'heads' covers all
technologies concerned with the processes of writing information on media, or
reading information from media.

14.1 MAGNETIC RECORDING MEDIA
How is hysteresis in magnetic materials used to record information?
The hysteresis of magnetization versus magnetic field in ferromagnets and
ferrimagnets can be used to good effect in magnetic recording. Without hysteresis
the magnetic state of the material in zero field would be independent of the field
that it had last experienced. However, in hysteretic systems the rémanent mag-
netization acts as a memory of the last field maximum, both in magnitude and
direction, experienced by the magnetic material. Therefore data, either in digital
form for computers and related devices, or analogue signals as in sound recording,
can be stored as magnetic 'imprints' on magnetic media.

Of course, to make this of any practical use it must be possible to store large
amounts of data in as small a space as possible. So in the recording industry there
is a continual need to increase the recording density of storage media. Currently,
magnetic storage densities are increasing at a rate of more than 100% per year
or equivalently by a factor of 10 every 3 years. The storage densities are con-
ventionally measured in 'bits per square inch'. The present generation of com-
mercial hard disk drives have storage densities of typically 2 x 1010 bits in"2

(30 x 106 bits mm-2).
The information must also be able to be retrieved with a minimum of distortion,

that is it must not be easily erased or changed by the exposure to extraneous
magnetic fields since the information should be capable of being stored
permanently. Nor should it be altered by the reading process since it is usually
necessary to reread the data many times without loss of information. Furthermore
it should be written and read with minimal power requirements.
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The magnetic recording medium must have high saturation magnetization to
give as large a signal as possible during the reading process. The coercivity must be
sufficient to prevent erasure, but small enough to allow the material to be reused
for recording. Coercivities in the range of 20-lOOkAm"1 are common for mag-
netic recording tapes and disks, although in the future, in order to continue to
improve storage densities, the coercivity of the media will need to increase. There-
fore coercivities in the range 200-240 kAm"1 (2.5-3 kOe) are anticipated [1].

14.1.1 History and background of magnetic recording
How has magnetic recording developed and what is the state of the art?
Analogue magnetic recording of the human voice was first demonstrated by
Poulsen, a Danish engineer. In his device, called the 'telegraphone', acoustic
signals were recorded on a ferromagnetic wire using an electromagnet connected
to a microphone. However, the reproduction was very weak due to the absence of
an amplifier. With the development of amplifiers the signals from the magnetic
medium could be recreated more strongly and the sound reproduction was easily
audible. However there was also a low signal-to-noise ratio, due to the nonlinear
nature of the recording process, which still meant that the quality of the sound was
not good. The ac biasing method of recording resulted in much better signal-to-
noise ratios because the recorded magnetization could be made linearly dependent
on the signal level. Magnetic tape was invented simultaneously in both the USA,
using a paper tape coated with dried ferrimagnetic liquid, and in Germany using a
tape containing iron powder. Oxide tapes were developed for the commercial
market by 3M Corporation and as a result audio recorders became available in
1948 and video recorders in 1956. Digital recording for storage of computer
information was developed by IBM and the first magnetic disk drive became
available in 1957.

This original hard disk drive, developed by IBM in 1957 and known as the
'RAMAC, had a data storage density of 2 x 103 bits in"2 (3bitsmm~2). The
increase in data storage densities since then has been continual, so that present
storage densities of 20Gbitin~2 represent an increase of a factor of 107. This
progress in storage densities is shown in Fig. 14.1. The rate of increase in storage
densities has accelerated in recent years due to the shift to smaller disks, the use
of thin film recording media, and the development of advanced read/write heads
with improved signal to noise ratios [2]. Projections for the future are shown in
Fig. 14.2 in which it is envisaged that the development of smaller magnetoresistive
read heads and improvements in actuation and micromechanics will provide the
next stages of evolution, followed eventually by STM ('scanning tunnelling
microscope')-like storage.

Since the 1950s there has been a growth in digital magnetic recording for the
storage of computer data which, together with the consumer demand for audio
analogue magnetic recording, particularly recording of music, form commercially
the most important areas of the magnetic recording industry. The industry is
currently worth about $100 billion a year.
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Figure 14.1 Progress in magnetic recording storage densities (after Grochowski and Thompson [2]
©IEEE 1994).
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Hard disk drives alone account for over $50 billion per year of this market.
By 2005 the hard disk drive market is expected to reach $70 billion per year [1],

14.1.2 Magnetic tapes
How are magnetic recording tapes produced?
Magnetic tapes are the most widely used recording medium for audio and video
signals. They are produced in two main forms known as paniculate and metal
evaporated (ME) tapes. The advantage of paniculate magnetic tapes is that they
can be produced in a wide variety of widths at high coating speeds and at low cost.
The disadvantage is that the magnetic particles only occupy 40% of the tape
volume. The current trend is toward the use of smaller particles with higher
packing densities. The thin film ME tapes have generally better performance
characteristics, but are more costly to produce.

Paniculate magnetic recording tapes consist of a coating of magnetic material,
usually gamma ferric oxide or a cobalt-modified variant of gamma ferric oxide.
The coating thickness is 3-6um on a flexible, nonmagnetic substrate which is
usually PET (polyethylene tetraphthalate). The thickness of the substrate is 10-
25 jim, but thinner 5 urn tapes of aramid are used for long-playing tapes, although
this is more expensive and has lower demand. The coating consists of the mag-
netic particles, a binder to contain and disperse the particles, lubricants to ease the
motion of the tape and abrasives such as particles of A12O3 to reduce wear of the
tape. The lubricants in paniculate tape are almost always 'internal' which means
that they are included as an integral part of the coating. The magnetic particle sizes
vary depending on the choice of the magnetic material, but are acicular (elon-
gated), and are typically 0.25 uin in length and 0.05 [am in width. These are single-
domain particles which can be easily magnetized parallel to their long axes. The
saturation magnetizations and Curie temperatures of materials used in these tapes
are discussed in Section 14.1.4.

Magnetic tapes are magnetically anisotropic. At present the particles are aligned
in the plane of the tape as shown in Fig. 14.3. In order to align the single-domain
particles the tapes are placed in a magnetic field oriented in the plane of the tape.
The field is applied before evaporation of the solvent which carries the magnetic
particles leaving the dry binder which carries the magnetic particles. The tape is
then heated to completely dry the coating and is rolled or squeezed to densify the
coating. Cobalt-modified gamma iron oxide is widely used in magnetic tapes
because of the need for increased coercivity. About 2-3 wt% cobalt is impregnated
at the surface of the 7-Fe2C>3 particles, and this results principally in an increase of
coercivity from about 30 kA m"1 to about 60 kArn"1. There is also a slight increase
in saturation magnetization and an improvement in the temperature sensitivity
of the coercivity. However, it is important that the cobalt is not absorbed into
the bulk of the material as this leads to a deterioration in magnetic properties, in
particular the coercivity becomes highly sensitive to temperature, which is dis-
advantageous. The cobalt-surface-modified gamma iron oxide is now widely used
in VHS videotapes, some audio tapes and floppy disks.
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Figure 14.3 Arrangement of acicular magnetic particles in conventional 'longitudinal' magnetic
recording tapes.

Metallic particle tapes were first made available commercially for audio tapes by
3M Corporation in 1979. Later Sony used this form of tape in its video cassettes in
1985. The advantages of this form of tape include the high saturation mag-
netizations that can be achieved, up to 1.7 x 106 Am"1 in iron tapes, particle sizes
of below 0.4 jim, and coercivities above lOOkAm"1. In fact coercivities above
200 kAirr1 and particle sizes below 0.05 um have been achieved [3]. Metal
evaporated tapes, or simply 'ME' tapes, were also introduced in 1979 for audio
cassettes by Matsushita in Japan, and later for video cassettes. In 1995, ME tape for
digital video cassettes became available. Recording densities on these tapes are

Leakage
flux

Single
domain
particle

Tape
base

Figure 14.4 Arrangement of acicular magnetic particles in 'perpendicular' magnetic recording tapes.
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currently 500 Mbits in~2, which is the highest among tape-based systems. There
seems no reason to doubt that 1 Gbit in~2 tapes will be produced in the near future.

Efforts have been made to develop tapes and disks for so-called perpendicular
recording media in which the long axes of the particles are aligned at right angles
to the surface as shown in Fig. 14.4. This should, in principle, allow higher record-
ing densities to be achieved although several difficulties have been encountered in
the development of perpendicular recording including the height of the head
above the medium [4], noise during the reading process [5] and mechanical
stability of the recording medium. The materials under consideration for perpen-
dicular recording are cobalt/chromium and barium ferrite.

14.1.3 Magnetic disks
How are magnetic recording disks produced?
The principles of recording on magnetic disks are almost identical to those of
recording on magnetic tapes and these will be discussed shortly. Magnetic record-
ing disks come in two categories: floppy disks and hard disks. The materials used
as a magnetic recording medium on floppy disk are also broadly similar to those
used on tapes. Floppy disks are made in the same way as tapes, and are usually
3¿ inch in diameter.

Hard disks were developed to provide data storage for large 'main frame'
computers, and originally were used exclusively for this application. Today hard
disks are supplied as standard items on small personal computers because they
provide greater storage capacity than floppy disks. In 2000 a typical personal
computer came supplied with a hard disk of capacity between 50 and 80 Gbytes of
memory. However, with disk storage densities now doubling in less than a year
it is reasonable to expect these capacities to reach close to 1000 Gbytes by the
year 2005.

Magnetic hard disks are produced by forming several layers of material, includ-
ing a nonmagnetic underlayer, a magnetic layer, an overcoat and a layer of lubri-
cants on a nonmagnetic disk substrate. The substrate is usually made of aluminium
or an aluminium-4% magnesium alloy in the form of a disk 1.3-1.9-mm thick and
95-356 mm in diameter. An underlayer of nickel phosphide is then evaporated to a
thickness of 10 urn onto the substrate to improve adhesion, followed by a 5-10-nm
thick layer of chromium or chromium/vanadium which helps to control the
crystallographic orientation and grain size of the magnetic layer by epitaxy. The
magnetic layer, which consists of a cobalt-based alloy, is then evaporated onto
the surface to form a layer 50 nm thick. Addition of platinum and tantalum has
been found to enhance the anisotropy of the cobalt layer.

An overcoat is deposited to provide a protective layer 15-20 nm thick. This is
usually a carbon-based material, but sometimes zirconia or tin are used. Finally,
disk lubricants are added to limit friction and increase the lifetime of the disk by
reducing wear. These lubricants assist in-contact, slow-speed sliding of the read/
write assembly, which usually rests on the disk when stationary. As the disk begins
to rotate several tens of revolutions are needed before the air bearing begins to
operate fully and lift the read/write head above the surface of the disk. The
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lubricants remain on the surface (unlike in floppy disks and particulate tape where
they are embedded in the material) and are known as 'topical' lubricants. These
usually consist of perfluoropolyether, a long-chain fluorocarbon compound which
is applied in monolayer thicknesses.

One of the advantages of disks over tapes is that access time is much shorter on
disks. This is mainly because the read heads can be moved quickly to the right
sector of the disk, whereas in tape recording it is necessary to rewind the tape to
find the data. In disk recording the access time can also be improved by rotating the
disk at a higher angular velocity. This by itself can bring problems of additional
wear on floppy disks but not on hard disks. The reason for this is that on floppy
disks the read/write head is in contact with the disk during the reading and writing
process, but in hard disks there is no direct contact during reading or writing.

In magnetic tape recording the contact between tape and the read and write
heads is a crucial factor in determining performance, but in that case actual con-
tact is acceptable because of the relatively low number of replay head/magnetic
tape passes expected. The heads are even contoured to improve contact with tape.
In magnetic floppy disks the head also rides in contact with the disk. On hard disks
the read/write head is not in contact with the disk except when the disk is
stationary and briefly as the disk comes up to full speed. In order to optimize the
performance of hard disks while ensuring that there is no direct contact between
head and disk during the read/write process, an air bearing is used. In this way the
head can be maintained close to, but not actually in direct contact with, the disk.
This is the so-called 'flying head'. The air flow is caused by the relative velocity

Figure 14.5 Relationship between head-media clearance (flying height) and storage densities (after
Grochowski and Thompson [2] © IEEE 1994).
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between the disk and head and this maintains a small gap. The typical head-to-disk
separation in today's hard disk drives is 50nm. When this arrangement fails, as
it does occasionally, we encounter the so-called 'disk head crash' which usually
results in some damage in the form of lost data.

The correlation between the head-disk separation, or flying heights, and storage
density is clearly shown in Fig. 14.5. The head-disk separation can be reduced
to about 10 nm before the situation becomes effectively 'contact' rather than 'non-
contact' recording, because at this separation the thickness of the wear-resistant
coating and warping of the disk have to be taken into consideration. The track
density to linear bit density ratio is currently around 1:16. Track densities on hard
disks are 25000 TPI ('tracks per inch', or 1000 tracks per mm) while linear
bit densities along these tracks are 400000 BPI ('bits per inch' or 16000 bits
per mm) [6].

14.1.4 Materials for magnetic recording media
What different types of magnetic materials are currently used for recording media?

Gamma ferric oxide
The most widely used magnetic recording material is gamma ferric oxide (7-Fe2O3)
which has been used in magnetic tapes since 1937. Gamma ferric oxide is not a
commonly occurring form of Fe2C>3 but is produced by oxidation of speci-
ally prepared Fe3O4. The coercivity of these tapes is in the range 20-30 kAm'1

(250-375 Oe) [7], The particle size used is typically a few tenths of a micrometre
with a length-to-diameter ratio of anything from 10:1 to 3 :1. The shape aniso-
tropy of the particles, of course, also determines their magnetization character-
istics such as coercivity. Saturation magnetization of the gamma ferric oxide is
350 kAm"1 (350 emu cc"1) while the Curie temperature is about 600°C which
is sufficiently high to avoid undue temperature dependence of the properties of the
medium while operating under normal conditions in the vicinity of room tempera-
ture. Other properties are shown in Table 14.1.

Table 14.1 Magnetic properties of materials used in participate magnetic recording media.

A/l^kAm"1)
M'Q
Hc(kArrr')
<Ts(Am2kg- ' )
p(kgm-3)
Particle size (jjrn)

YFc203

350
600
25-30
75

4900
0.5x0.1

Co/yFe203

370
600
30-70
78

4900
0.5x0.1

Cr02

480
128
35-75
95

4900
0.4 x 0.05

Fe

1700
770
100-200
220

7800
0.15x0.05

BaO.6Fe203

370
320
50-200
70

5300
0. 1 5 x 0.05

Cobalt surface-modified gamma ferric oxide
Cobalt surface-modified gamma ferric oxide is now used as a magnetic recording
medium because it has a higher coercivity than gamma ferric oxide [8]. The cobalt
accumulates preferentially in the surface of the tape to a depth of about 3 nm. The
addition of cobalt increases the anisotropy of the material leading to higher
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coercivity, for amounts of cobalt adsorbed on the surface up to 2%. Above this
amount of cobalt, coercivity remains stable, but the saturation magnetization
begins to decrease [9]. The cobalt is added to the ferric oxide at the last stage of
processing before it is coated onto the substrate. Most video tape now contains
cobalt surface-modified ferric oxide that has a coercivity of 48 kArn"1 (600 Oe).
Note that absorption of cobalt into the bulk of the material increases the
temperature sensitivity of magnetic properties such as coercivity, and is therefore
disadvantageous.

Chromium dioxide
Chromium dioxide was also popular as a high-performance material for audio
recording, before the cobalt-doped surface modification process was invented, in
order to produce a magnetic recording material with higher coercivity than gamma
ferric oxide. Chromium dioxide has a coercivity of 40-80 kAm"1. Its satura-
tion magnetization is slightly higher than gamma ferric oxide at 480 kAm"1

(480 emu cc"1), but it has a rather low Curie temperature of 128°C which makes
its performance more temperature sensitive, a factor which is a distinct dis-
advantage. It is also more expensive than iron oxide which reduces its commercial
attraction. It has been replaced by the cobalt-doped gamma ferric oxide as a high-
performance recording material.

Ferromagnetic powders
Iron powder is also used as a recording medium. This has higher saturation
magnetization than the oxide particulate media described above and so can be
used in thinner coatings. The coercivity of these fine particles is typically
IZOkAirT1. The production of the iron particle tapes is a modification of the
production process for iron oxide tapes in which the oxide is finally reduced to
metallic iron under a hydrogen atmosphere at 300°C. However, these tapes also
need a surface coating of tin to prevent sintering whereby the particles coalesce
and are no longer single domains. Typical magnetic properties are saturation mag-
netization 1700 kAm"1 (1700emucc"1), and coercivity 120kAm"1 (1450Oe).

Thin metallic films
Thin metallic films are now the principal magnetic medium for high-performance,
high-storage density, hard disk drives. The main requirement in hard disk drive
media is to obtain an adequate coercivity because ultimately this determines the bit
sizes which can practically be used, and hence the recording density. The magnetic
layer is 50 nm thick and consists of an assembly of almost noninteracting particles
of diameter 50 nm. It is usually cobalt with other chemical additives such as
phosphorus, chromium, nickel, tantalum or platinum. These additives are used to
increase the anisotropy and hence the coercivity of the cobalt film and to reduce the
coupling between grains. The increased coercivity of the film reduces the noise level
caused by fluctuations in leakage field. Typically coercivities of these thin film
media are up to Hc = SOkAm"1 (1 kOe), with remanences of MR = 800 kAm"1

(BR = 1T).
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Cobalt-chromium thin film media have improved corrosion resistance
compared with pure cobalt. Originally this was the reason for the chromium addi-
tions. However, it was found that the chromium accumulates in paramagnetic
intergranular regions thereby reducing the exchange coupling between the grains,
increasing coercivity and reducing noise fluctuations in the film. Tantalum has also
been found to reduce noise fluctuations by reducing grain sizes in the magnetic
film [10].

Metallic films are also used in some recording tapes because of their high
saturation magnetization and remanence. They can be used in the form of very thin
coatings since the leakage magnetic fields, which are used in the reading process,
are proportional to the rémanent magnetization on the tape. The higher saturation
magnetization therefore ensures that these leakage fields are rather larger than for
similar thin films of other materials. The pickup voltage in the read head is
proportional to the magnetic field from the tape. Thinner recording media allow
higher recording densities since the rate of change of field with distance dH/dx
along the tape can be made larger.

In the last 10-20 years serious efforts have been made to develop metallic thin film
recording tapes as an alternative to the widely used particulate tapes. The magnetic
layer is usually an evaporated film of cobalt-nickel alloy which is formed as slanting
columns in a porous matrix of cobalt and nickel oxides. These have remanences of
Mr = 0.3 x 106Am-1 (Br = 0.4T) and coercivities of Hc = SOkAm'1 (IkOe).
The disadvantage of these tapes is that they do not wear well and so their lifetimes are
relatively short. They need surface coating of lubricants (topical lubricants) which
are usually fluorocarbons similar to those used on metallic disks, and corrosion
inhibitor. However, whereas hard disk drive units are hermetically sealed to retain
lubricant and keep out contaminants, the metallic tapes are necessarily exposed and
therefore retention of the lubricant is a problem.

Hexagonal ferrites
Hexagonal ferrites have much higher coercivities than any of the above mate-
rials and are used for more specialized applications such as credit cards where
there is less likelihood of a need for rerecording, but where it is imperative
that there is little chance of demagnetization by unanticipated exposure to low and
moderate external magnetic fields.

The main materials of interest are barium ferrite, and to a lesser extent
strontium ferrite. Barium ferrite BaO.6Fe203 has a coercivity of up to 480 kAm"1

in its pure form, with saturation magnetization of 370kAm"1 (4.6kOe). Disk-
shaped barium ferrite particles of diameters 50 nm can be produced in films 5 nm
thick on substrates by controlling the particle growth conditions. These small
particle sizes allow the possibility of very high storage densities (250 x 109

bits in~2) and high signal-to-noise ratios. The particles grow with their easy axis
normal to the plane of the film and therefore barium ferrite is one of two leading
candidate materials for perpendicular recording media, as discussed below. The
addition of cobalt and/or titanium to barium ferrite reduces its anisotropy and so
leads to a reduction in coercivity to the range 40-160kAm"1 (0.5-2kOe).
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Perpendicular recording media
Perpendicular recording media in which the magnetic domains are oriented with
magnetizations normal to the plane of the medium have been pioneered by
Iwasaki in Japan [11]. These media offer potential for higher recording density
than conventional or 'longitudinal' media but so far seem to suffer from other
problems which have prevented them becoming viable, such as the need for a very
small head-to-medium distance and noise problems in the reading process. The
material that has been used for this is a sputtered cobalt-chromium film 100-nm
thick containing greater than 14% Cr, which forms columns about 50-100 nm in
diameter normal to the surface of the substrate. In addition, due to the nature of
the growth of these films, the magnetic moments remain perpendicular to the
plane of the film, unlike the previous materials in which the magnetic moments lie
in the plane of the material. When the moments are perpendicular to the plane it is
believed that the transitions between neighbouring 'bits' become much sharper
leading to an increased recording density. Another material that has been tried is
oriented barium ferrite, which is produced on a plastic substrate by a method
similar to that used to produce particulate tapes.

In principle, perpendicular recording has been shown to be possible; however, it
has yet to become more than merely of scientific interest. In practice there are
problems with mechanical failure of the medium on floppy disks and also the small
head-to-medium separation needed is less than present technology is capable of
handling [12].

14.1.5 Magneto-optic recording
Can magneto-optic reading methods be used to develop recording disks with higher
storage densities or faster access times?
Another area of interest in magnetic recording is that of magneto-optic devices.
These make use of the Faraday and Kerr effects in which the direction of
polarization of light is rotated in the presence of a magnetic field. In this way, two
oppositely magnetized regions on a magnetic medium can be distinguished. The
advantage of magneto-optical disks is that the storage density can be 1000-times
greater than for floppy disks [13,14], while access time for magneto-optic disks are
40-100ms which are about 10-times faster than for floppy disks but are not yet
competitive with access times for hard disks, which are typically 20-60 ms [14].

In 1988 the ISO standard 5\ inch magneto-optic drive was introduced which
was a double-sided drive with a total storage capacity of 750 Mbytes. The second-
generation ISO standard was introduced in 1991 with a capacity of 1300 Mbytes
at a density of 400 Mbit in"2 (0.64 Mbits mm~2), and in 1994 the third-generation
ISO standard magneto-optic drive became available with 2Gbytes of storage
capacity at a density of 600 Mbits in"2 (0.96 Mbit mm~2). This third-generation
drive is still commercially available. All three systems used 780 nm wavelength
laser light. Access times for these disks have remained at about 100ms and the
data transfer rate is 5-10Mbits"1 [15].

The recording of information depends on thermomagnetic magnetization in
which an intense light source such as a focused laser beam is used to heat a small
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region of a thin film of ferrimagnetic material above its Curie temperature and then
it is allowed to cool again. If the material is exposed to a reverse magnetic field
throughout the process (i.e. is operating in the second quadrant of its magnetic
hysteresis loop) then we know from earlier discussion of the anhysteretic
magnetization that its optimum magnetic energy state corresponds to magnetiza-
tion in the opposite direction. As it cools through the Curie point the magnetization
obtained in the region exposed to the laser beam will be the anhysteretic mag-
netization under the prevailing field, which will be in the third quadrant. This
means that the regions which have been exposed to the laser beam will be mag-
netized in the opposite direction, as shown in Fig. 14.6.
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beam

(a)
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T
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Thermomagnetic recording

- Elliptical
polarization Incident and

reflected beams (E H x)
Magnetooptical
radiation (Eix)

Addition
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Figure 14.6 Magneto-optic reading and writing processes.

The subsequent reading of magnetic information on the medium depends on the
magneto-optic Kerr effect. A polarized laser beam of weaker intensity than that
used for writing is reflected from the surface of the magnetic recording medium, as
in Fig. 14.7, and is then passed through a polarized analyser before being detected.
The presence or absence of the reverse domains can then represent either '0' or
'!'. The film can later be wiped clean by saturating the magnetization in the
original direction.

It should be noted that for purposes of detection this technique works best in
perpendicularly magnetized media. Signal-to-noise ratios are comparable with
conventional magnetic disk recording. Magneto-optic disks made by Philips have a
50-nm thick magnetic coating on a transparent 3-mm thick plastic substrate. Their
method uses a 3-mW laser with a spot size of 2 x 5 um reading the disk by the
Faraday effect.

Two types of magnetic materials are generally used in the production of
magneto-optic disks. The most widely used material is a rare earth-iron-cobalt
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Figure 14.7 Components of a magneto-optic disk recording system. Reproduced with permission
of R. M. White, Introduction to Magnetic Recording, published by IEEE Press, 1985.

film of general composition Rx(FeCo)i_x, R is usually terbium plus gadolinium,
although sometimes dysprosium is used. The film is produced as an amorphous
layer 50-nm thick on a rigid plastic substrate, which is 3-mm thick. The rare earth-
iron-cobalt films have high perpendicular anisotropy (Ku > 105Jm~3), a coer-
civity of typically 240 kAm"1 (3 kOe), a high squareness ratio Mr/Ms and a Curie
temperature of 250-300°C depending on the composition. The advantages of
using an amorphous film include (i) high uniformity of properties due to lack
of crystallinity, (ii) low-cost deposition by sputtering, and (iii) fine control of the
magnetic properties, such as saturation magnetization and coercivity, by changes
of the chemical composition of the film.

The main alternative material for magneto-optic disks is cobalt/platinum, which
is deposited in a multilayer. These multilayers consist of 10-30 pairs of layers,
each pair consisting of 0.3-0.5 nm of cobalt and 0.8-1.2 nm of platinum. The
high uniaxial anisotropy of the multilayers (Ku > 105 Jm~3 in these films) ensures
that the domain magnetizations align perpendicular to the plane of the film. The
coercivities of these films are above SOkAirT1 (1 kOe), but perhaps more signifi-
cantly they have high Kerr rotations at short wavelengths. One disadvantage of
these Co/Pt multilayers is the relatively high Curie temperature of about 400°C,
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which means that the disks have to be heated to a high temperature in order to
change the direction of magnetization.

14.2 MAGNETIC RECORDING HEADS AND THE RECORDING PROCESS
How is information stored on, and retrieved from, the recording medium?
The recording process involves the mechanism by which a magnetic imprint is left
on the magnetic medium and the mechanism by which this imprint is read from
the medium and the original information, whether an audio signal or some digital
data, is recreated.

The writing process is the means of transferring electrical impulses in a coil
wound on an electromagnet (the writing head) into magnetic patterns on the
storage medium. The reading process is the inverse of this mechanism. The reading
process is quite well understood since it requires no knowledge of the magnetiza-
tion characteristics of the medium. Only the rémanent magnetization of the
medium determines the response. However, the writing process, which involves
the effect of an applied field on the magnetization of a magnetic medium, is by com-
parison more difficult to model. This is because it is difficult to model the depen-
dence of magnetization of the medium on the magnetic field even when the field is
completely uniform, and in these cases the field is not even uniform.

Magnetic recording heads are either inductive heads for writing, as shown in
Fig. 14.8, or magnetoresistive heads for reading, as shown in Fig. 14.9. Magneto-
resistive heads confer significant advantages over the inductive heads for reading
because of their low power requirements and high sensitivity. The magnetoresistive
read heads that are used in disk drives were originally developed employing
conventional anisotropic magnetoresistance in permalloy. This exhibits changes in

Acore

Figure 14.8 An inductive write head.
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Figure 14.9 A magnetoresistive read head.

resistance AR/R of typically 2-3% in fields of 300-400 Am'1 (4-5 Oe). The giant
magnetoresistive read heads that are used in commercial disk drives have AR/R
of typically ten times greater than this. The writing or imprinting of magnetic
signals or data on the hard disks is still performed by inductive write heads.
Therefore, the current generation of disk drives employ separate technologies for
the reading and writing functions, unlike earlier disk drives which used inductive
heads to perform both operations.

14.2.1 Inductive recording heads
How does the current generation of 'write beads' work?
Inductive recording heads that are used for writing data on disks and tapes consist
of a 'C-shaped high permeability core with a gap known as the 'head gap', of

Tapetase Recoiling field
Erase field /Magnetic coating

Erase
head

Write
head

Read
head

Figure 14.10 Magnetic erase, read and write heads in a magnetic tape recording system.
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Figure 14.11 Schematic diagram of an inductive read head above a magnetic disk.

width 0.1 um, as shown in Fig. 14.8. The core is wound with a flux coil in order to
generate the necessary magnetic flux density in the gap when a current is passed
through the coil. The field in the gap is called the 'fringing field'. In magnetic tape
recording the heads are in direct contact with the tape, as shown in Fig. 14.10, and
usually there are separate heads for reading, writing and erasing. In disk recording
there is only one inductive head which rides on an air bearing above the surface of
the disk, as shown schematically in Fig. 14.11. The write head material must have
high saturation magnetization in order to leave a large imprint (high magnetiza-
tion) on the tape but it must also have low remanence to ensure that there is no

Figure 14.12 The magnetic fringing field in the gap of a recording head as a function of position:
the x direction is given in Fig. 14.13 and the y direction is normal to the plane of
Fig. 14.13.
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writing when the current in the coil is zero. Further, it is also clear that a low
coercivity is desirable. Write heads are constructed of magnetically soft material,
these include soft ferrites (MO.FeiOO, sendust Al-Fe-Si and Al-Fe, permalloy
(Ni-Fe), and amorphous cobalt-zirconium.

In writing mode the magnetic tape or disk passes the head where the fringing
field causes a realignment of the magnetization within the single-domain particles.
The magnetization is then a record of the strength of the field in the gap of the
recording head at the time that the disk or tape passed it. In reading mode the
passage of the tape causes a variation in flux density in the read head which is
converted into a voltage in the coil wound on the read head. The signal is then
amplified and, in the case of audio recording, used to activate a loudspeaker.

The magnetic field in the gap of the write head, which is the main region of
interest to the magnetic recording engineer in the writing process, can be
determined by the finite-element techniques described in Chapter 1. This fringing
field is shown in Fig. 14.12. With present technology that uses conventional,
'in-plane' recording media, the tape responds to the component of the fringing
field which is parallel to the tape surface. However for perpendicular recording
the fringing field needs to be normal to the plane of the tape or disk and this leads
to differences in the design of the read and write heads.

14.2.2 Magnetoresistive read heads
How does the current generation of 'read beads' work?
Magnetic recording technology has recently been making rapid progress in storage
densities due principally to the development of the magnetoresistive read head,
which has led to the production of a new generation of high-sensitivity, high spatial
resolution read heads [16]. Commercially available magnetoresistive heads today
employ giant magnetoresitive multilayers. These multilayers of iron/chromium or
cobalt/copper can exhibit changes in resistance AR/R of 80%, although the fields
needed for this are still higher than in the anisotropic magnetoresistive material.

The magnetoresistive head detects the leakage flux from the locally magnetized
regions of the recording medium by means of a two-point resistance measurement,
as shown in Fig. 14.9. Spatial resolution is determined by the distance between the
electrical contacts in the perpendicular or 'cross-track' direction, which is typically
around 2 jam, and by the shield separation along the track direction, which is
typically 0.1 Jim. To obtain an antisymmetric response that is approximately linear
with strength of the leakage field, the magnetoresistive material also needs to be
biased with another constant applied field. This is often supplied by using an
adjacent magnetized film. The voltage generated by the magnetoresistive element
also depends on the current, and so it is desirable to operate at high current to
maximize sensitivity. Current densities of 2 x 10~3 Am~2 are typically used in
these sensors at present. The operating current density is, of course, limited by the
power dissipation in the head.

So-called 'colossal magnetoresistance' (CMR) has been discovered in manganate
perovskite thin films in which the fractional change in resistance AR/R can be as
high as 99.9%, but only at the rather low temperature of 77 K and at a high field of
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4.6 x 106 Am"1 (6T). This may indicate the future direction for magnetoresistive
read heads, but at present it is not clear whether these materials will ultimately
prove useful in magnetic recording applications. Certainly the effect will need to
be observed at higher temperatures and at lower field strengths before it can be
considered as a potential practical alternative to the current technology.

14.2.3 Writing head efficiency
How can the performance of a recording head be determined?
Head efficiency is the ratio of magnetomotive force obtained across the head gap
to the magnetomotive force supplied by the energizing coil. This is determined
from consideration of the magnetic circuit formed by the magnetic core and air
gap of the head.

In the air gap

£g = MoHg. (14.1)

In the core

Bc - /^0HC, (14.2)

where /xr is the relative permeability of the core and in this case Hc is the field in
the core. The magnetomotive force of the driving coil is also the magnetomotive
force across the whole magnetic circuit. If ^g is the length of the gap and Cc is the
length of the ferromagnetic core

Ni=Hc4+Hg<g. (14.3)

The efficiency of the core, being simply the ratio of magnetomotive force across
the gap Hg£g to the magnetomotive force supplied from the coil N¡, is then

J-f 0 U 0rj = £Mi = lV* (14 4)77 (Hc4 + fVg) Ni ( }

The efficiency can also be expressed in terms of the reluctances of the magnetic
paths RC in the core and Rg in the gap:

RS (VAg)
' (Rc+Kg) (VAg) + (4/Mc)' V ' '

where Ac is the cross-sectional area of the core and Ag is the cross-sectional area of
the gap. This means that a large gap field, and hence a large fringing field, requires
a large permeability /xr in the core and a large ratio AJA%.

The head gap together with the saturation magnetization of the head material
determines the field in the gap. This determines the fringing field in the vicinity of
the gap and consequently the maximum coercivity of the recording medium that
can usefully be used with the head.

Karlqvist heads are an idealization often used for calculating the field in the
vicinity of the gap. In Karlqvist heads the pole gap is small compared with the pole
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Hx(x,y)

Figure 14.13 Vertical and horizontal components of the magnetic field in the vicinity of a
Karlqvist head.

tip lengths, such as in the head depicted in Fig. 14.13. In the past these provided a
relatively simple geometrical situation for determining the magnetic field in the
gap. With three-dimensional finite-element codes available now for calculating
the fields in the gap the Karlqvist approximation is less important.

14.2.4 The writing process
What happens when information is written onto a recording medium?
We now consider the process of magnetizing the recording medium. Specifically
we wish to know how the medium responds to an applied field in the head gap.
In general, this is a rather difficult problem which is not very well understood,
although some empirically based models can be used to good effect. One problem
that arises as the medium passes close to the head is that the magnetic fields at
different depths in the magnetic medium are different, as shown in Fig. 14.14.
Secondly, as the medium passes the gap the field it experiences changes with time.

To give an example of the writing process we will suppose that a given region of
the recording medium passing the head begins at the positive remanence point on
its hysteresis curve, as shown in Fig. 14.15. Then, as it passes the gap with a
negative field the material passes down the second quadrant of the hysteresis loop
to its coercive point -Hc, for example. As it passes the head the magnetic field it
experiences from the head gap decreases to zero and the material magnetization
passes along a recoil minor hysteresis loop to H = 0, ending with a small positive
remanence.
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Figure 14.14 Variation of the magnetic field strength in both direction and magnitude close to a
permalloy inductive recording head used for writing. © 1985 IEEE.

Figure 14.15 Recoil minor loops during the writing process for different regions of a magnetic
recording medium as it passes a recording head.

This means that even where the magnetization had been reduced to zero at the
coercive point the magnetization will actually finally increase again to give a
positive rémanent magnetization. Therefore, to result in a completely demagne-
tized state M = 0 the field experienced by the medium must be greater than -H0
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a point referred to as the rémanent coercívity Hcr. A very square hysteresis loop in
which the recoil minor loops are very flat (dM/dH) = 0 is therefore desirable.

During the writing process the time-varying current in the writing head coil
changes thereby altering the field in the gap. This causes localized changes in the
magnetization in the recording medium which passes the write head at a constant
speed. It has proved difficult to determine the magnetization of the disk or tape in
two dimensions and therefore theoretical models have only limited usefulness
in the predictions of tape magnetization.

Models for the magnetization of the recording medium usually make use of some
very simplistic approximations to the magnetization characteristics of the medium
such as assuming M is a single-valued function of field. One such model is the
Williams-Comstock [17] model. This is a one-dimensional model which employs
the arctangent function. The magnetization M(x) in the tape can be expressed as
a function of distance in response to a step function change in field in the gap
by the equation

M(*)=(^arctan(*Y (14.6)\ 7T J \aj

where x is the distance along the tape or disk, a is an adjustable parameter which is
determined by the rate of change of magnetization with distance and MR is the
rémanent magnetization.

14.2.5 Recording density
How much information can be stored on a magnetic disk?
The recording density in a medium depends on the magnetic properties of the
medium and the characteristics of the writing head. The recording density is
determined by the product of bits per inch (BPI) and the number of tracks per inch
(TPI). Currently, hard disks have TPI values of 25 000 and BPI values of 400 000.
The maximum attainable BPI can be measured by the parameter a, known as the
transition length, which is the minimum distance along the tape that is needed to
reverse completely the magnetization from saturation remanence in one direction
to saturation remanence in the other direction.

The transition length in which a signal can be made to change is dependent
on dM/d# in the recording medium. This can be expressed as the product
(dM/dH) (dH/dx), where (dM/dH) is a property of the medium, specifically the
slope of the hysteresis curve, while (dH/djc) is a property of the writing head. If we
make the approximation that the slope of the hysteresis loop is constant then
for a fixed field gradient in the head gap we have the following expression for the
transition length a

(2MR/7T) (2MR/7T)

(dM/cbc)max (dM/dH)(dH/d*)max <"•''

This can be verified from the Williams-Comstock equation above. The tran-
sition length a is therefore made smaller for large field gradient dH/djc and large
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dM/dH on the major hysteresis loop, that is for a square hysteresis loop. Of course,
there are other factors which have not been taken into account in this simple
analysis, such as the demagnetizing field in the tape and the spatial variation in the
transition region. However, these do not alter the basic conclusion about the
desirability of high field gradient in the gap and square hysteresis loop materials.
Notice that while a large value of dM/dH on the major hysteresis loop is desirable
this should coincide with small dM/dH on the recoil minor loops.

14.2.6 AC bias recording
Are there any ways to improve the quality of the imprinted magnetic signal on the
recording medium?
When signals are recorded in analogue form, such as in audio recording, it is
advantageous to have the recorded signal proportional to the amplitude of the
input signal. The recorded signal is the rémanent magnetization on a region of
the magnetic tape, while the input signal voltage is converted to an applied field in
the recording head gap. Because the initial part of the magnetization curve is non-
linear the rémanent magnetization on the tape would be a nonlinear function of
the applied field if the dc initial magnetization curve of the tape were used.
However by ac biasing, in which a sinusoidal field of decaying amplitude is
superimposed on the dc field, the nonlinearity can be overcome. This produces the
anhysteretic rémanent magnetization curve. This variation of remanence with
applied field is linear at low fields, and produces a more desirable linear recording
characteristic which also improves the signal-to-noise ratio.

14.2.7 The reading process
How is the information read from a hard disk?
The reading process in magnetic recording is relatively well understood. The tape
or disk passes below the read head and causes a fluctuation in the flux density
in the magnetic core of the read head. The fringing fields from the tapes can
be dealt with using simple models. For example, consider the situation shown in
Fig. 14.11. As the disk or tape passes near to the reading head the stray field
associated with the magnetic imprint on the medium enters the reading head.
At the gap this field passes through the coil giving a voltage that, as we have shown
earlier, is proportional to —dB/di, the rate of change of magnetic induction linking
the coil. Therefore the voltage in the reading head will be dependent on the stray
magnetic induction emanating from the tape which is collected by the head and
passed through the coil. The reading head efficiency is defined as the ratio of the
tape flux entering the reading head that actually passes through the sensing coil.

14.2.8 Various types of recording devices
What other types of magnetic recording devices are available?
In the past, the most common form of magnetic recorders were audio recorders.
These have traditionally been analogue recording devices which use ac bias
recording, that is they make use of the linearity of the anhysteretic rémanent
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magnetization curve to avoid distortion of the reproduced signal. By this method
it is possible to make the magnetization imprinted on the recording medium prop-
ortional to the amplitude of the signal. In audio recording, particularly music, any
distortion of the signal is undesirable. Therefore the reading and recording pro-
cesses take place relatively slowly. The typical tape velocity in professional audio
recording is 0.4ms"1 [18], while on audio cassettes it is less than SOmms"1 [19].

Video recorders use frequency modulation in which the signal S(t) imprinted on
the tape is related to the original input signal f(t) by

S(t) = cosLjt + 27T/3 Í f ( t ) d t \ , (14.8)

where u is the carrier frequency and (3 is the modulation index. The video signals
range from 30 Hz to 7 MHz so that tape velocities are relatively fast and may be
up to 5ms"1 [18].

The most common form of magnetic recording devices, digital recorders, are in
most cases peripheral devices for computers, whether disks or tapes. In digital
recording it is only necessary to distinguish between '0' and' 1' so these devices can
function with much lower signal to noise ratios than are acceptable in analogue
recording. Furthermore since in digital recording the actual level of the signal is
not really crucial, providing that a '0' and' 1' can be distinguished, the reading and
writing process is very fast. However, even though the signal-to-noise ratio can be
relatively small in digital recording the tolerable error rate is also very low.

14.3 MODELLING THE MAGNETIC RECORDING PROCESS
What computer models of the magnetic recording processes have been developed?
For the purposes of designing new and improved magnetic read and write heads
and magnetic recording media it is important to have a good quantitative
understanding of the magnetization processes in the materials which can be
expressed through validated computer models or simulations. Several different
models are currently used. Here, two of these models are discusssed.

14.3.1 The Preisach model
What model is available to describe magnetic switching processes in their most
general form?
In the magnetic recording industry the magnetic properties of the medium are
usually represented using a model for magnetization as a function of field that was
devised in the 1930s by Preisach. This model really does not give much physical
insight into the magnetic properties of materials, being in essence a complicated
mathematical data fitting procedure, but it can be used to give reasonable
mathematical representations of hysteresis curves once the curves are already
known. It has been found useful for modeling the magnetic properties of the
recording media and is quite widely used in the recording industry [20].
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The essential idea of the Preisach model is that the observed bulk magnetic
hysteresis loop of a material is due to a summation of more elementary hysteresis
loops of domains with differing switching fields (coercivities). These 'pseudo-
domains' can only have two states within the confines of the model, with
magnetization parallel or antiparallel to a given direction. The model relies on a
dejisity function called the Preisach function which is defined on a plane described
by the positive and negative switching fields H+ and H-. This function is used to
determine how many domains switch their orientation from + to -, or vice versa,
as the field is swept between limiting values of magnetic field H.

The model works fairly well for weak interactions between domains such as
occur in these recording media, which are usually aggregates of single-domain par-
ticles, and because the magnetic moments within the elongated single-domain
particles can only have magnetic moments along one axis leading to a magnetiza-
tion either parallel or antiparallel to the long axis of the particles. A comprehensive
treatment of the Preisach model can be found in Mayergoyz's book on modeling
of hysteresis [21].

14.3.2 Stoner-Wohlfarth theory
What model is available to describe switching processes in paniculate magnetic
recording materials*
The Stoner-Wohlfarth theory [22] has more relevance to particulate recording
media than to the permanent magnets for which it was originally developed.
In particulate recording media the isolated single-domain particles are deliberately
created on the tapes or disks and these are clearly well-suited for the application of
the Stoner-Wohlfarth theory. The model has therefore found appropriate appli-
cations in determining the magnetization characteristics of fine-particle recording
media [23].

14.4 MAGNETIC RANDOM ACCESS MEMORIES
/s it possible to replace semiconductor RAM with magnetic RAM?
The random access memories that are currently in use in computers (dynamic
RAM or 'DRAM', and static RAM or 'SRAM') are both based solely on
semiconductor technology. As a result of this, data that is stored in these memories
is lost when the power supply is interrupted. This can arise when the voltage
supply is deliberately switched off, or when there are unplanned interruptions or
significant fluctuations in the voltage supply. On the other hand magnetic
memories offer the prospect of developing nonvolatile RAM whereby the
magnetic states of the memory bits are not altered by the voltage interruptions
and therefore data is maintained. Such memory has obvious beneficial attractions
including the fact that computers would not need to be 'rebooted' when switched
on. Such memories are also not susceptible to radiation exposure.

The new field of magnetoelectronics, in which magnetic and electronic func-
tions are integrated into a single device, offers the prospect of significant improve-
ments in the speed, power consumption and reliability of data memory devices
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[24]. Prototype MRAM devices have already been shown to have improved on the
speed and power consumption of conventional nonvolatile semiconductor
memory by several orders of magnitude, and have reached data storage densities
and speeds that are comparable with volatile dynamic RAM.

There are three main technologies that are coming under serious consideration:
hybrid semiconductor/magnetic devices, magnetic tunnel junctions and all metal
spin transistors and spin valves [25]. Of these, the hybrid devices have the
advantage, being compatible with existing CMOS fabrication and processing
procedures. These devices employ magnetic elements which can be magnetized in
one of two directions. The leakage field from the magnetic elements can be
detected by a Hall effect sensor and from the sign of the Hall voltage the
'orientation' of the memory bit can be determined.

Magnetic tunnel junctions consist of a simple three layer sandwich of two
magnetic layers separated by a thin, 0.5-1.Onm, nonmagnetic, nonconducting
layer [26]. The tunnelling current that passes between the two magnetic layers
through the dielectric differs depending on the relative orientations of the magneti-
zation vectors in the two magnetic layers. The fractional change in resistance AR/R
of such devices is now typically 12%. The tunnel junctions have several attractive
features, not least of which is the possibility of fabricating MRAM with extremely
high data-storage densities [27]. However, there are also some problems with this
technology, including the fact that magnetic tunnel junctions are not compatible
with normal CMOS processing methods, specifically the annealing that is
normally performed at temperatures in the range 400-800°C to repair damage
to the CMOS structures. These temperatures damage the magnetic tunnel junction
which can only sustain temperatures in the range 200-300°C.

All metallic magnetoresistive devices such as the ferromagnet-metal-ferro-
magnet sandwiches and multilayers include the magnetic spin valve. Such devices
have similarities to the magnetic tunnel junction. They employ either current in the
plane 'cip' or current perpendicular to the plane 'cpp' configurations. The latter is
also the configuration used in magnetic tunnel junctions. In these all-metallic struc-
tures the resistances are lower than in the tunnel junctions and the fractional
change in resistance is only about 5%. Most device designs are analogous to those
using magnetic tunnel junctions. The all-metallic devices have the possibility of
high storage densities like magnetic tunnel junctions. However, because of the
lower resistance they have low read-out voltages. The slow response time means
longer read/write times of about 100ns. Together, these two factors have preven-
ted them reaching performance levels that are acceptable for MRAM applications.

Generation and control of spin-polarized currents in magnetoelectronic devices
such as spin valves has been demonstrated in a metallic mesoscopic spin valve
device by Jedema et al. [28] in which ferromagnetic electrodes of permalloy
(Ni-Fe) are used to drive a spin-polarized current into copper. This allows control
of spin-polarized currents in solid-state devices at room temperature through the
use of ferromagnetic contacts and marks a significant development towards 'all-
metallic' electronic devices, such as diodes and transistors, as an alternative to
conventional semiconductor devices.
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15 ELECTRONIC MATERIALS FOR TRANSDUCERS:
SENSORS AND ACTUATORS

OBJECTIVE
In this chapter we will be concerned mainly with materials that are used in
energy conversion devices. The most common are those which convert
electrical into mechanical energy and vice versa. These are the electrostrictive
and piezoelectric transducers. Most of the discussion of these transducers can
also be applied to magnetostrictive transducers. We will look at the different
types of materials for these transducers and define their performance
parameters. Among these materials the most important class is the ferro-
electrics which have high relative permittivities and high strain coefficients.
Finally, we look at applications of these materials in microelectronics, such as
microelectromechanical machines (MEMs), and data storage.

15.1 TRANSDUCERS
What do we mean by the term transducer?
A transducer is any device that converts one form of input energy into a different
form of output energy. In other words it is an energy-conversion device. A com-
mon example is a device which converts mechanical energy into electrical energy,
such as a piezoelectric transducer. In fact, the original use of the term transducer
was specifically for a device which sensed mechanical input energy and converted
it into electrical output energy. However, the term is now used to include any
device which converts one form of energy to another. The efficiency of a trans-
ducer is a useful parameter which measures the ratio of output energy to input
energy. Examples of transducers are loudspeakers, ultrasonic vibration generators,
thermocouples, microphones and various forms of magnetometer.

Except for some rather minor differences of meaning the terms transducer,
sensor and detector are regarded as synonymous. In these transducers the output
bears a known relation to the input. Therefore the output can be controlled
through the input, or alternatively the input determined by measuring the output.
Another way of viewing transducers is simply as a means of interacting between
electronic instrumentation and the outside world. In most cases, therefore, we are
concerned with devices that act as detectors (sensors) which convert the external
energy into an electrical voltage, or emitters (actuators) which convert the
electrical voltage into external energy.

15.1.1 Classification of transducers
What terminology is used for the various types of transducers?
The general categories of transducers are shown in Table 15.1.
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Table 15.1 Nomenclature
of transducers in terms of
their forms of input and out-
put energy.

The nonlinearity of a transducer can be an important factor. Nonlinearity refers
to the deviation from a directly proportional dependence of output on input. For
example, when the mechanical force produced by an electrostrictive transducer
varies with the square of the applied electric field. Ferroelectric and ferromag-
netic materials also exhibit a hysteretic relationship between input and output
which can be a hindrance in certain transducer applications, particularly for posi-
tioning devices.

The most common form of transducers are those which convert to and from
acoustic energy. These are used in loudspeakers, microphones and acoustic sys-
tems. The three types of acoustic transducer that are widely used are piezoelectric,
electrostrictive and magnetostrictive. These acoustic transducers are usually oper-
ated at, or close to, mechanical resonance in order to obtain maximum energy
conversion efficiency. For wide bandwidth operation the transducer must neces-
sarily be operated at frequencies well away from the resonant frequency. This is
achieved in some cases by sandwiching layers of transducer material with plates of
metal to reduce the sharpness of the resonance.

There is a wide range of physical sizes for transducers from a few square
millimetres and weights of a few grams up to square metres and weights of tens of
kilograms. Transducer phased arrays are sometimes used instead of a single trans-
ducer in order to steer an acoustic beam in particular directions. In some cases
special transducer arrays several metres across and weighing about a ton have been
constructed for submarine surveillance applications.

15.1.2 Energy conversion in transducers
What properties must a material have to make it suitable for use as a transducer?
In order for a material to be useful as a transducer it must have a high efficiency for
converting one form of energy into another. The input energy is usually supplied
by an external influence such as an applied stress, an electric field or a magnetic
field. The response of the material, in the form of a voltage or a strain, can be mea-
sured and used to detect the external field, as in a sensor, or to cause movement,
as in an actuator.

The most common forms of transducer materials are piezoelectric, electro-
strictive and magnetostrictive materials. Piezoelectric/electrostrictive transducer
materials include quartz, ammonium dihydrogen phosphate, tourmaline, lithium
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Type of transducer Input energy Output energy

Electrostrictive Electric Mechanical
Piezoelectric Mechanical Electrical
Electroacoustic Electrical Sound
Photoelectric Light Electrical
Magnetoelectric Magnetic Electrical
Thermoelectric Thermal Electrical
Magnetostrictive Magnetic Mechanical
Piezomagnetic Mechanical Magnetic
Pyroelectric Infrared radiation Electrical
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sulphate, barium titanate, lead zirconate and lead magnesium niobate, and
Rochelle salt (potassium sodium tartrate tetrahydrate, KNaC4H4O6.4H2O). Mag-
netostrictive transducer materials include nickel alloys and some of the more
recent rare earth-iron alloys such as Terfenol (terbium-dysprosium-iron).

15.2 TRANSDUCER PERFORMANCE PARAMETERS
What materials properties are important for transducer applications?
Ferroelectrics are widely used as transducer materials, since they give a high
polarization to field strength ratio. These materials need to be polarized or 'poled'
in order to ensure that the piezoelectric effect is observed. On the other hand the
dependence of strain on electric field is usually relatively high in these materials,
although it is also hysteretic, as shown in Fig. 15.1. This is analogous to the
variation of bulk magnetostriction with magnetic field, and produces the well-
known 'butterfly curve' of strain versus field.

Electric field £

Figure IS. I Dependence of strain on electric field in a ferroelectric material showing hysteresis.
Reproduced with permission of N. Braithwaite and G. Weaver, Electronic Materials,
published by Butterworths, 1990.

15.2.1 Strain
How do we define electrostrictive strain in these materials*
The strain is given simply as the fractional change in length,

.=(£).
where £Q is the original length and A^ is the change in length. The length £0 is
usually taken as the length in the depolarized state (or in magnetostrictive
materials the demagnetized state) for convenience and the changes are there-
fore measured by convention relative to the depolarized (or demagnetized) state.
The above equation is itself merely a definition and tells us nothing about the
performance of the materials or how the strain varies with field or polarization.
The strain derivatives, de/dÇ for electrostrictive/piezoelectric materials and de/dH
for magnetostrictive materials, are rather more meaningful representations of
materials properties, since they tell us how rapidly the strain changes with the
relevant applied field.
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15.2.2 Motor coefficient (strain derivative)
What does the derivative of strain with respect to field tell us about the suitability
of a material for transducer applications?
The derivative of the strain e with respect to the applied electric field £ is one of the
most useful paramètres for quantifying the performance of a transducer material.
This is known as the motor coefficient. For piezoelectric/electrostrictive mate-
rials, this is

'-(%\
and is measured in V"1 m (or equivalently CN"1). For magnetostrictive materials
it is the derivative of strain with respect to the magnetic field H,

-(£)..
and is measured in A"1 m. When changes expressed by differentials are small
and reversible these d coefficients are also equal to (dD/da)^ and (dB/da)H,
respectively, where D is the electric flux density, B is the magnetic flux density and
a is the stress. This is also sometimes known as the strain coefficient, strain
derivative, or simply as the 'd coefficient'. It is a useful measure of the perform-
ance of a material since as we shall see it is closely related to the energy transfer
efficiency of the material. It is often quoted in the range of picometres per volt for
piezoelectric/electrostrictive materials or in nanometres per amp in magnetos-
trictive materials. Typical values of the d coefficient for various materials are: lead
zirconate titanate 5 x lO'^mV"1 , ammonium dihydrogen phosphate 5 x 10~n

mV"1, lead magnesium niobate 1.5 x 10~9mV~1, iron ~3xlO~ 9 mA~ 1 , and
terbium dysprosium iron 30 x 10~9mA~1.

At the origin of the hysteresis curve, that is in the unpolarized state, the strain
derivative is very small, as can be seen by reference to Fig. 15.1. This condition is
not very useful as a transducer. However, the material can be used in its 'poled'
(magnetized) condition whereupon the strain derivative will be considerably larger
and the strain will remain almost linear with change in field for a range of field
strengths. In active devices it is also possible to use the material under a biased
electric field which can be adjusted to find the maximum of de/dÇ or de/dH.

Most piezoelectric transducers are ferroelectrics which are 'poled' to produce a
rémanent polarization and then are operated over a range of electric fields which
is small enough to ensure that depolarization does not occur. The exceptions are
the single crystal piezoelectrics which are not ferroelectric and therefore cannot
be poled.

15.2.3 Generator coefficient
How is the dependence of polarization on strain quantified?
When using a piezoelectric material to generate a voltage by application of a stress
the parameter of interest is the rate of change of electric field with stress. This is

332



333

TRANSDUCERS

called the generator coefficient g since it generates a voltage from applied stress at
constant electric flux density D

,= _f f i ) = ^tf) . <15.4,
\dvJD £0*e \dvJD

This is measured in VN"1!!!, (or equivalently m2C~1). It is also equal to the
derivative of the polarization P with respect to stress at constant electric flux
density D as shown. The analogous coeeficient for a magnetostrictive transducer is
the derivative of the magnetic field H with respect to stress,

,__(«)_(«). (,5.5,
\da JB \da JB

This is measured in A N"1 m. It is also equal to the derivative of the magnetization
M with respect to stress at constant magnetic flux density B, as shown.

When the changes represented by the differentials are small and reversible these
g coefficients are also equal to -(de/dD)^ and -(de/dB)^ respectively, where D is
the electric flux density and B is the magnetic flux density. This is also sometimes
known as the piezoelectric coefficient or polarization coefficient. It is often quoted
in the range of millivolt metres per newton. Typical values of g for different
materials are; lead zirconate titanate 30 x 10~3 VmN"1, TXE' (a commercial
form of lead zirconate titanate) 10 x 10~3 VmN"1 and potassium sodium niobate
20xl(T3VmN-1 .

15.2.4 Energy coupling coefficient
How can the energy conversion efficiency be represented?
One of the most useful parameters for a transducer, whether it is electrostrictive
or magnetostrictive, is its energy conversion efficiency. This can be expressed via
the square of the coupling coefficient k2 which is defined as

kl = energy output
energy input

In the case of an electrostrictive transducer the value of k2 is given by

k2=^d2, (15.7)
£Q£T

where d, the strain derivative, has been defined in Section 15.2.2. In the case of a
magnetostrictive transducer k2 is given by

k2=^d2. (15.8)
MGMr

However, it must be remembered that in both ferroelectric and ferromagnetic
materials, £r and ¿¿r are not constants. This means that the energy conversion effi-
ciency changes with applied field strength. Therefore it is not a material constant.
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153 TRANSDUCER MATERIALS CONSIDERATIONS
What considérations determine the choice of a particular material for a transducer?
The first problem in fabricating a transducer for a particular application is to find a
material which exhibits the right effect for converting the input energy into the
required output energy. Once this has been achieved it is usually necessary to
modify the material itself to optimize its performance. This means enhancing
the desired properties to increase the energy conversion efficiency. This can be
achieved in some cases by adjusting the chemical composition. For example, in
recent magnetostrictive transducer materials the anisotropy has been reduced by a
suitable choice of alloying components leading to an increase in the rate of change
of strain with applied field.

15.3.1 Piezoelectricity
Can a voltage be induced in a material by the application of stress?
The piezoelectric effect is the production of an electric charge on the surface of a
material, and hence a voltage across the material, as a result of the application of
stress. The piezoelectric effect, therefore, allows a conversion of mechanical
energy into electrical energy through a material transducer.

This occurs in materials where the application of stress causes a change in
electric polarization by separating the centres of positive and negative charge in
the crystal. In crystalline materials the piezoelectric effect only occurs in a limited
class of materials of low crystal symmetry in which the application of stress
deforms the crystal structure and leads to the generation of an electric dipole
moment as shown in Fig. 15.2. These materials necessarily have a crystal structure
which lacks a centre of symmetry [1, p. 273].

The converse effect also occurs: when an electric field is applied to a piezo-
electric material a strain is produced. This is somewhat similar to électrostriction
(see Section 15.3.2), but in this case the strain is antisymmetric with respect to the
electric field, which means that it is proportional to odd powers of the field
strength. Therefore, the strain in a piezoelectric material changes sign when the
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Figure 15.2 Noncentrosymmetric crystal classes can exhibit piezoelectricity because the application
of a stress changes the separation between positive and negative ions leading to a net
polarization.
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electric field is reversed in direction. In the majority of cases, piezoelectric
materials exhibit greater strain under the action of an electric field than con-
ventional electrostrictive materials, although some of the ferroelectric electro-
strictive materials exhibit comparable strains to piezoelectric materials.

An important application of piezoelectricity is in the quartz crystal resonator in
which the strain amplitude can become very large when the applied ac voltage
signal coincides with the mechanical resonance of the quartz crystal. Similarly,
when the frequency of mechanical excitation coincides with the resonant fre-
quency a large electrical signal is produced.

15.3.2 Electrostriction
What happens to the shape of a dielectric when it is subjected to an electric field?
All dielectric materials undergo a strain when subjected to an applied electric
field. It results in a slight change in shape. This change in length is termed
électrostriction.

The exact definition of électrostriction is somewhat more restricted than simply
the strain produced by an applied electric field. In order to distinguish it from
being the converse of the piezoelectric effect, the term 'électrostriction' is
sometimes used to refer only to those strains which do not change sign if the
direction of the electric field is reversed.

Some materials, such as the ferroelectrics, can exhibit either piezoelectricity or
électrostriction depending on the conditions under which they are operated.
In fact, électrostriction always occurs in dielectric materials under the action of an
electric field, but when both types of strain occur together the electrostrictive
strains are much smaller than the piezoelectric strains. In these cases we simply
refer to the material as piezoelectric.

Compared with the antisymmetric strains induced in the inverse piezoelectric
effect the symmetric electrostrictive strains are, in most cases, typically A « 10~4

[2], In some ferroelectrics, however, the electrostrictive strains can be much
larger, for example A ~ 10~2 to 10~3 in lead zirconate titanate [3,4] or lead
magnesium niobate [5]. This latter material, which at lower temperatures is a
ferroelectric, is usually operated above its Curie temperature in transducers.

15.3.3 Magnetostriction
What happens to the shape of a magnetic material when it is subjected to a
magnetic field?
Magnetostriction is a property of materials which change length when they are
magnetized either spontaneously by virtue of a magnetic phase transition
(spontaneous magnetostriction) or under the action of a magnetic field (field-
induced magnetostriction). This effect is only significant in magnetically ordered
materials such as ferromagnets, ferrimagnets and antiferromagnets. Typical mag-
netostrictive strains of magnetic materials are of the order of A « 10~5 to 10~6 [6],
although more recent advanced materials, such as terbium dysprosium iron, have
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magnetostrictions as high as 10~3 [7,8]. If the ferromagnet is demagnetized
the magnetostrictive strains are symmetric with the applied field, but if the
ferromagnet is in a rémanent magnetized state the magnetostrictive strains are
antisymmetric with the applied field.

Much progress has been made in recent years in the development of
magnetostrictive transducers based on giant magnetostrictive materials such as
Terfenol-D (Tb^Dy! _ ̂ Fe2; x < 1). Reliable model descriptions of these materials
have been developed at the same time, and these can now provide valuable
predictive simulations of transducer performance. Calkins et al. [9] have
developed a magnetostrictive transducer model based on energy considerations
which gave very good agreement with performance data of Terfenol-D trans-
ducers. The model described the £, H hysteresis loop of the material, and then
incorporated a quadratic relationship between magnetostriction and magnetiza-
tion. In this way, a hysteretic relationship between magnetostrictive strain and
applied magnetic field was obtained. The model was able to describe strain under
both major and minor loop excursions of magnetization versus magnetic field. The
simulator was then used as part of a control system for the transducer in which the
current to the coil was the input control paramètre. An important factor in the use
of this model for control applications is that the speed of computation is fast when
compared with other hysteretic methods, allowing rapid response and thereby
operation at higher frequency. The model is also compact because it has only a
small number of model paramètres and can be operated under a wide variety of
conditions including nonlinear regimes.

Dapino et al. [10] have shown how to include nonlinear and hysteretic effects
directly into the transducer equation for strain. In this case, both the elastic
compliance and the piezomagnetic coefficient d were allowed to be variable and
path dependent. This generalization of the magnetostrictive model is suitable for
describing the behaviour of magnetostrictive transducers at high drive levels by
providing a more complete description of the relationship between input current
to the coil and output strain of the transducer.

15.3.4 Piezomagnetism
Is there an inverse effect to magnetostriction?
Under certain conditions the application of stress to a magnetic material can cause
a change in magnetization. In unmagnetized materials this is the magnetic
analogue of the piezoelectric effect in unpolarized dielectric materials. Only a few
examples are known of magnetic materials which can change from a demagnetized
to a magnetized state under the action of a stress. One of these is the anti-
ferromagnet CoF2 in which a small magnetization of the order of 103 A/m can be
produced by large shear stresses [11].

A related and much more common phenomenon is the tendency of magnetic
materials to change their magnetization under the action of an applied stress when
already magnetized [12]. This effect is only of significant size in ferromagnets and
is rarely employed in applications. There are no known cases of ferromagnets
which become magnetized under the action of a stress on the unmagnetized state.
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15.3.5 Mechanism of piezoelectricity
Why does a voltage change arise in a piezoelectric as a result of stress?
The phenomena of piezoelectricity and électrostriction are of great practical
importance in electromechanical transducers. Consider a piezoelectric material
which elongates along the direction of polarization. If this material is subjected to
a compressive stress along the axis of polarization, and if we consider only
reversible processes, the material can best respond to the compressive stress by
polarizing itself at right angles. This will minimize the strain energy of the system
and leads to ionic displacements at right angles to the original direction of
polarization and compressive stress. The result is the generation of a voltage along
the direction perpendicular to the stress where there was previously no voltage.
Therefore the compressive stress has generated a change in voltage. This is the
piezoelectric effect.

The inverse effect is the change in strain along the axis of polarization caused
by the application of an electric field. Suppose an electric field is applied per-
pendicularly to the direction of polarization. This will eventually result in a
rotation of polarization into the field direction, and this causes a change in strain
along the direction of the field. By the Poisson effect there will also be a change in
strain at right angles to this direction.

15.3.6 Comparison of électrostriction and magnetostriction
Are électrostriction and magnetostriction analogous effects under the action of
electric and magnetic fields, respectively?
According to the conventional definition, electrostrictive strain is dependent on
even powers of the electric field strength (i.e. symmetric with field strength). This
definition is suitable for most dielectrics, but can cause a problem in ferroelectrics,
(see Section 15.4) because of hysteresis in the relationship between polarization
and electric field. If we wish to maintain the analogy with magnetostriction, the
électrostriction should be defined as a strain which is invariant under the reversal
of the direction of polarization, because the magnetostrictive strain can be either
symmetric or antisymmetric with field strength, depending on whether the
magnetic material was already magnetized.

The analogy with magnetostriction is clear. In many cases, ferromagnetic
magnetostrictive transducers and actuators are operated in a 'biased' condition
which is equivalent to the 'poled' condition of a ferroelectric electrostrictive trans-
ducer or actuator. The objective of biasing (poling) is merely to find a point on the
magnetostriction (électrostriction) curve at which the strain derivative is greater
than at the unmagnetized (unpolarized) state. The dependence of strain on mag-
netization (polarization) remains symmetric despite the biasing. However, the
dependence of strain on magnetic field (electric field) becomes antisymmetric
once the material has been biased (poled). In magnetic materials the phenome-
non is referred to as magnetostriction under both conditions as there has not
been any fundamental change in the nature of the material or its response to the
applied field.
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15.3.7 Piezoelectric and piezomagnetic response times
What is the relative speed of response in piezoelectric electrostrictive and
magnetostrictive materials?
Generally, the speed of the piezoelectric response is much faster than the analo-
gous response of a magnetic material to field or stress. Piezoelectric transducers
can operate at frequencies of up to tens of megahertz whereas magnetostrictive
transducers are restricted to a few kilohertz. This is because most highly electro-
strictive materials are insulators, while most highly magnetostrictive materials are
conductors. In this latter case, the generation of eddy currents at higher frequencies
limits the penetration of the alternating magnetic field into the material.

15.4 FERROELECTRIC MATERIALS
Can materials be spontaneously polarized?
Ferroelectricity is a property of certain dielectrics which exhibit electrical
polarization in the absence of an applied electric field. On the scale of a few
atoms ferroelectrics consist of structural units with tiny localized electric dipoles.
These dipoles are grouped locally within domains which have spontaneous
polarization, as shown in Fig. 15.3, in the same way that a ferromagnet is
spontaneously magnetized within domains. The bulk polarization can nevertheless
be zero, since the polarizations of all the domains can sum vectorially to zero.

Figure /5.3 Schematic diagram of electric domains with spontaneous polarization within a ferro-
electric material. The arrows show the directions of the electric polarization vectors.

Ferroelectric materials have a macroscopic electric polarization P which is both
large and nonlinear as a function of electric field £. In particular, the variation of
P with £ exhibits hysteresis as shown in Fig. 15.4. The name ferroelectric was
derived from the name ferromagnet because both show hysteresis, not because
of any association between ferroelectrics and the element iron. The early theory of
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polarization i P

Electric field Ç

Figure 15.4 Hysteresis in the dependence of electric polarization on electric field in ferroelectrics.

ferroelectricity was analogous to the classical Weiss mean field theory of ferro-
magnetism. Examples of ferroelectric materials include barium titanate, lead
zirconate titanate, Rochelle salt (potassium sodium tartrate tetrahydrate) and zinc
oxide. Typically, ferroelectrics have a high relative dielectric constant (relative
permittivity) er. A good example is barium titanate BaTiO^. The variation of its
relative permittivity with temperature is shown in Fig. 15.5. This can reach a value
of several thousand just below the Curie point.

-50 0 50 100 150 200

Temperature T (°C)

Figure IS.S Variation of relative permittivity of barium titanate with temperature.

15.4.1 Electric polarization in dielectric materials
How can an electric polarization be produced in a material ?
An electric polarization can be produced in certain types of materials in two ways.
The polarization can arise spontaneously within domains, so that the material
forms a low symmetry structure at temperatures below a transition temperature
known as the Curie point. Alternatively, the polarization can be caused by the
application of stress, in which the electric charges in a noncentrosymmetric crystal
can be displaced by the stress. In the first case we have a ferroelectric material, in
the second case a piezoelectric material.
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15.4.2 Depolarized ferroelectrics
Under what conditions does a ferroelectric have the largest differential permittivity
in zero electric field?
When a ferroelectric with high relative permittivity £r is used in a capacitor it is
used in the depolarized condition. From this state the differential permittivity
(= d?/d£) is larger than in the rémanent polarized condition and therefore for a
given amplitude of electric field £ the change in polarization P is greater since
P = eoXe£

15.4.3 Domains and domain walls
How is the polarization process explained in terms of changes in the domain
configuration?
Ferroelectric materials consist of a number of localized regions or volumes in
which the electric polarization vectors are aligned parallel, but from one region to
the next the directions of the vectors change. These volumes, within which the
polarization vectors are parallel, are known as domains. The regions at the bound-
aries of the domains are known as domain walls. In barium titanate, for example,
the difference between directions of polarization on either side of the domain
walls can be 180° or 90° because the crystallographic directions of polarization are
restricted, by crystalline anisotropy, to be along the [100] family of directions as
shown in Fig. 15.6.

Figure 15.6 Tetragonal and rhombohedral structures both of which occur in barium ferroelectrics.
In the tetragonal phase the ferroelectric domain walls must be either 90° or 180°. In
the rhombohedral structure the domain walls can be either 180°, 71° or 109°.
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The high relative differential permittivity of depolarized ferroelectrics arises
from the motion of 180° domain walls, which are easy to move. At higher polar-
izations it becomes necessary to move more 90° walls which require higher energy
because of the associated change in strain. This leads to a lower differential
permittivity.

Since the directions of polarization have associated with them a spontaneous
strain, the strain energy is a very significant factor in determining the energy of the
domain wall. Consequently, it is relatively easy to move a 180° domain wall under
the action of a field because it does not result in any change in strain. However,
90° walls are difficult to move because successive regions of the material need to
change shape to accommodate the movement. This requires higher energy to over-
come obstructions to the necessary deformation from neighbouring grains which
must be strained to accommodate the local change in shape. These strains can even
be large enough in some cases to cause plastic deformation or even cause the
material to fracture.

15.4.4 Paraelectric phase
What happens to ferroelectrics at higher temperatures?
At the Curie temperature and above, the ferroelectric domains are destroyed and
the material becomes 'paraelectric'. The Curie point itself depends on chemical
composition of the material. In the paraelectric phase polarization is induced by
application of an electric field, but when the field is removed it reverts to the
unpolarized condition. In this phase, the electric dipole vectors are disordered in
the absence of an applied field. This is analogous to the behaviour of the mag-
netization of a paramagnet when subjected to a magnetic field.

15.4.5 Ferroelectric phase
What happens when the disordered paraelectric is cooled below its Curie
temperature?
Above the Curie temperature, since the electric dipoles are randomly oriented, no
electric domains can exist. Once the material has been cooled below its Curie
temperature it becomes ferroelectric with localized spontaneous polarization
within domains as shown in Fig. 15.3. The ferroelectric phase is characterized by a
very high relative permittivity er. All ferroelectric materials exhibit a paraelectric
phase at higher temperatures.

15.4.6 Antiferroelectric phase
Is there an ordered polarized phase that is analogous to antiferromagnetism with
antiparallel alignment of polarizations?
Compositions within 10% of pure PbZrO3 are orthorhombic and below the Curie
temperature are antiferroelectric, which means that the neighbouring unit cells of
the crystal have polarizations in opposite directions. This is analogous to the
antiferromagnetic phase in magnetic materials.
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15.5 FERROELECTRICS AS TRANSDUCERS
Which materials are most widely used as transducers?
Ferroelectric materials are particularly useful in transducers. All insulators,
whether ferroelectric or not, exhibit électrostriction to some degree. This results
directly from the polarization of the material. Since ferroelectrics give much
higher polarizations for a given field strength we might expect that these materials
will, on the whole, exhibit higher electrostrictive strains. This, of course, is not a
totally general result, but the materials with the highest électrostrictions are also
ferroelectrics. These materials, such as barium titanate, are therefore widely used
as transducers.

Other ferroelectric materials such as lead zirconate titanate and related
materials (PZT), lithium niobate, lead germanate, potassium dihydrogen phos-
phate, strontium barium niobate have ranges of Curie temperature up to 1500 K
and spontaneous polarizations of up to 4 coulombs per square metre.

15.5.1 Piezoelectricity in ferroelectrics
Does a ferroelectric material exhibit électrostriction or piezoelectric strain under
the action of an electric field?
In the 'poled' state the action of a stress on a ferroelectric produces a change in
electric voltage. These materials can therefore act as generators of electric field.
The 'poled' state of the material is one in which it has been subjected to an electric
field and left with a rémanent polarization. This is equivalent to rémanent mag-
netization in a ferromagnet. The applied stress causes a rearrangement of the
electric domains. This changes the bulk polarization leading to a change in voltage
across the material.

Note that while all ferroelectrics can exhibit piezoelectricity (according to the
conventional definition (see Section 15.3.6)), not all piezoelectric materials are
ferroelectrics. For example, quartz is piezoelectric but not ferroelectric.

15.5.2 Polycrystalline transducer materials
How does the energy conversion efficiency vary from single crystal to polycrystal-
line materials?
The above discussion of électrostriction and piezoelectricity needs to be modified
in the case of polycrystalline materials because the change in shape of the grains is
opposed by their neighbouring grains. These neighbouring grains will not, in
general, need to reorient, or change shape, at the same field strength. The
mechanical work done internally as a consequence of these strains results in lower
energy conversion efficiencies.

The use of ferroelectric materials has allowed polycrystalline materials to be
employed as transducers. In the early days of piezoelectricity the connection
between piezoelectricity and crystal symmetry was so strongly established that the
analogy between electrostrictive strain of a ferroelectric and the magnetostrictive
strain of a ferromagnet was difficult to recognize. Therefore the piezoelectrics
which received attention were crystalline materials without centres of symmetry.
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Once it was established that the polarity needed to impart piezoelectric properties
could be achieved by the temporary application of a strong electric field to
ferroelectric materials, a whole range of new polycrystalline piezoelectric electro-
strictive materials became available [13].

15.5.3 Ageing
Does the bulk polarization of a ferroelectric change with time?
A very slow change in rémanent polarization occurs with time in ferroelectrics.
This results in a decay of remanence through relaxation of the material to its
global energy minimum which in zero field occurs at zero bulk polarization P.
As in ferromagnets the magnetic domain walls are pinned by defects and this
increases both the coercivity and the ageing rate of the material by making changes
in polarization arising from domain wall motion more difficult.

15.5.4 Lead zirconate titanate (PZT)
What is the most widely used ferroelectric material?
An important category of ferroelectrics is based on lead, zirconium and titanium
oxides and is known as 'PZT'. These may be considered the archetypal ferro-
electric materials. Suitable adjustment of the chemical composition and micro-
structure of these materials can result in a wide range of possible properties
suitable for many technological needs. In this respect PZT plays a role in
ferroelectrics that is similar to the role of iron in ferromagnets.

The perovskite crystal structure which occurs in barium titanate also occurs in
the alloys of the system PbZrO^-PbTiO^, lead zirconate titanate. By varying the
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ratio of Zr to Ti the properties can be engineered to meet many transducer
specifications. The phase diagram of PZT is shown in Fig. 15.7.

15.5.5 Chemical additions to PZT
How can the piezoelectric properties of PZT be controlled by selection of chemical
composition?
The PZT class of ferroelectrics are very important because of the diversity of
properties that they can display. The materials properties can be engineered by
chemical additions and control of microstructure. This diversity of ferroelectric
properties makes the material very versatile and of crucial importance to the
subject of ferroelectricity. The properties of PZT can be strongly influenced by the
addition of other metal oxides. These are used to manipulate properties such as
conductivity, electric coercivity and elastic modulus. In the PZT compounds the
energy conversion efficiency also depends on the chemical composition. If the
composition is close to the rhombohedral-tetragonal transition which occurs at
about 50%Zr-50%Ti then the energy conversion efficiency rises to about 25%
(k = 0.5), from values in the range of 2% (k = 0.15) on either side of this
composition, as shown in Fig. 15.8.

Figure 15.8 Variation of the coupling coefficient k of PZT with chemical composition. Reproduced
with permission of N. Braithwaite and G. Weaver, Electronic Materials, published by
Butterworths, 1990.

The reason for this high conversion efficiency at 50%Zr-50%Ti composition is
that the grains of the material can find shear transformations between both
rhombohedral and tetragonal crystal classes because the energy is finely balanced
between these two crystal structures at this composition. These shear transforma-
tions therefore occur as well as the conventional electric polarization rotations
within either the rhombohedral or tetragonal crystal grains. This allows the
rotations to proceed more easily via two mechanisms and results in smaller
internal energy losses.
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15.5.6 Ferroelectric thin films for microelectronic applications
Can ferroelectric materials be combined with semiconductors to produce
microelectronic devices?
There is an increasing need to integrate ferroelectric materials with semiconduc-
tors in devices in order to take advantage of the wide range of dielectric, piezo-
electric and electrostrictive properties of ferroelectrics. For example, ferroelectrics
can be used to fabricate microcapacitors for dynamic random access memories
(DRAM) and nonvolatile ferroelectric random access memories (NVFRAM). The
high dielectric permitivities of perovskite materials such as lead zirconate titanate
(PZT) can be used to make DRAMs with higher storage density and faster access
times, while the large values of rémanent polarization of these materials are suitable
for NVFRAMs. The high piezoelectric coefficients of some ferroelectrics are
suitable for microelectromechanical machines (MEMs) in which both electronic
and microscopic mechanical functions are integrated onto the same substrate.
MEMs embrace a wide range of functions including accelerometers, displacement
transducers, micropumps, pressure sensors and microactuators.

These materials can be produced by a variety of thin film fabrication techniques
such as sputter deposition, pulsed laser deposition, chemical vapour deposition,
plasma-enhanced metal-organic chemical vapour deposition and solution deposi-
tion [14]. In many cases lead zirconate titanate (PZT) has been the material of first
choice for prototype NVFRAMs and barium strontium titanate has been used for
DRAMs. A variety of ferroelectric materials can be used for MEMs, although PZT
and related materials are the leading candidates.

15.5.7 Ferroelectrics for data storage
What are the prospects for using ferroelectric media instead of magnetic media for
recording applications?
In much the same way that ferro- and ferrimagnetic materials have been used for
data storage, ferroelectrics could also be used in principle, and in fact they have
come under consideration for this from time to time. In the past, considerable
effort has been devoted to this but the power input needed to obtain fast switching
speeds has been a limitation. More recently there has been renewed interest by
Chikarmane et al. [15] and Scott et al. [16]. It seems from this work that thin films
of lead zirconate titanate may have applications in dynamic random access
memories because of the large areal charge storage density (19.6 |iC/cm2) and low
leakage current density (1.32 x 10~7A/cm2). The rémanent polarization of lead
zirconate titanate is typically 10|iC/cm2.

For nonvolatile random access memories Ramesh et al. [17] have studied
heterostructures composed of layers of lead zirconate titanate (PZT) and yttrium
barium copper oxide (YBCO). The principal advantage of ferroelectrics over
ferromagnetic materials for data storage lies in the high switching speeds which
can be achieved. Ferroelectrics can respond to applied fields at frequencies up
to the megahertz range, while magnetic materials, particularly electrically conduct-
ing magnetic materials, can only respond at kilohertz frequencies. On the other
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hand, the access time for data storage and retrieval is not limited by the response
time of the storage medium alone, and this means that other factors limiting the
response time need to be improved before the speed of the magnetic material itself
becomes the critical parameter.

15.5.8 Dynamic random access memory (DRAM)
What advantages do ferroelectric materials have over conventional semiconductors
for dynamic random access memory?
DRAM forms a large market segment of the computer industry that is viewed as a
technology leader for semiconductor devices because of its crucial impact on
computer performance. There are significant potential benefits that can be
achieved through the incorporation of thin film ferromagnetic materials into
DRAM. In the last ten years, there has been substantial progress in the integration
of ferroelectrics such as barium strontium titanate into high-density prototype
DRAM devices. The main objective is to increase storage densities and reduce
access times through the use of ferroelectric materials.

Ferroelectric memory devices can be produced in perpendicular arrays of rows
and columns with a ferroelectric capacitor located at each crossing point. Each
capacitor will, therefore, represent one digital bit of data in a structure that is
analogous to the magnetic core memories used in early computers. The data
storage density increases as the area of an individual capacitor in DRAM
decreases, being 256 Mbit for devices with individual capacitor areas of 0.4 |¿m2

and 1 Gbit for devices with capacitor areas of 0.2 |im2. Using standard low
dielectric constant materials, it is difficult to increase the capacitance per unit area,
as is necessary for increased data storage densities. There are difficulties in getting
beyond 9fF/jim2 using the standard materials such as silicon dioxide or silicon
dioxide/silicon nitride. However, high permitivity materials can allow the capaci-
tance per unit area to be enhanced. Two materials currently under consideration
for this application are tantalum oxide and barium strontium titanate (BST).
Of these, BST offers the higher potential. The highest capacitance per unit area
reported to date for a BST-based DRAM is 145 fF/|im2 in a 2-nm thick film with a
relative permittivity of 325 [18].

15.5.9 Non-volatile ferroelectric random access memory (FRAM)
What advantages do ferroelectric materials have over magnetic materials for
'nonvolatile' random access memory?
The main classes of materials currently used for nonvolatile memory are the ferro-
magnets and ferrimagnets. Ferroelectric materials provide an alternative means for
producing nonvolatile memories for computers. In ferroelectric memories, the
read/write times of 1-35 ns are much faster than existing electronically erasable
programmable ROMs (EEPROMs) which take 120-150 ns for read/write opera-
tions [19]. Nonvolatile FRAMs have been produced in fully functional 256-kbit
devices using standard CMOS methods. These incorporated one transistor and
one capacitor per data cell with 32K x 8 cells operating at 3 V. The feature sizes
were 1.2 jam.
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The main materials used in NVFRAM are PZT and strontium-bismuth-tantalate
(SBT). However, thin film ferroelectrics can encounter some performance prob-
lems as a result of leakage currents. These can limit the endurance time of the
memory meaning that it is not truly nonvolatile. PZT suffers from this problem,
but SBT appears to have much less difficulty. On the other hand, SBT has a lower
rémanent polarization than PZT and this is disadvantageous. Polarization 'fatigue'
is another factor that has to be taken into account for this application. This is the
reduction in polarization that results from repeated read/erase/rewrite operations.
It causes a change in the ferroelectric hysteresis loop of the material rendering
it progressively less suitable for the application. SBT is superior to PZT in this
respect, even when layer thicknesses are less than lOOnm, because it maintains
better ferroelectric properties including more stable remanence.

Ferroelectric models of these materials are needed in order to understand their
properties better and to use in computational materials simulators. In particular,
there is a need to be able to describe the P, £ (polarization, electric field) hysteresis
loop characteristics of these materials and how they evolve with time or ageing
of the material. Such models would allow property predictions and simulations of
device performance which could be used to improve device designs. Three areas
are currently in need of investigation: (i) phenomenology of the dependence
of rémanent polarization on coercivity, dielectric coefficients and capacitance;
(ii) dependence of electrostatic breakdown field on thermal conductivity and
specific heat; and (iii) dependence of switching time on coercivity. The above
require the development of detailed microscopic models in order to better
understand the behaviour of the materials. Such modeling will need to take into
account microstructure (grain size and texture), depletion effects, ferroelectric
domain wall motion and will even need to consider the nature of the electrodes
and interfaces in the final analysis.

15.5.10 Microelectrical mechanical machines (MEMs)
How can electrostrictive I ferroelectric materials be used in microscopic devices with
moving parts?
MEMs, which combine traditional electronic functions with mechanical functions
on a single semiconductor chip, can be produced with device dimensions in the
range of 10|im-10mm. These devices are aimed towards full integration of
sensing and actuating functions on a common substrate. The materials that are
used in MEMs include the usual semiconductor materials Si, SiOi, SiaN4 together
now with other classes of materials such as piezoelectrics or ferroelectrics. The
performance of ferroelectric materials in electromechanical energy conversion
make them suitable for many MEMs device applications. Among the desirable
properties of ferroelectrics for MEMs devices, the high piezoelectric coefficient
allows large displacements and high forces to be generated for relatively low
voltages. Furthermore, the large changes in polarization that are generated by
strain in these materials lead to voltage changes that can be relatively easily sensed
using a capacitive method.

347



CHAPTER 15 ELECTRONIC MATERIALS FOR TRANSDUCERS: SENSORS AND ACTUATORS

Poling, or polarizing of ferroelectric materials, enables polycrystalline materials
with piezoelectric properties to be produced in thin films instead of the traditional
piezoelectric crystalline form. Materials such as lead zirconate titanate are
particularly well adapted for thin film MEMs uses.

In the design of MEMs devices incorporating ferroelectric materials it is
important to know in advance the ferroelectric properties of the material,
particularly the piezoelectric coefficient d which can be obtained from the basic
actuator differential equation. In the case of ferroelectric materials it should be
remembered that d is a hysteretic variable and, therefore, it is necessary to know
how it varies with electrical field strength and field exposure history.

MEM devices are usually fabricated on either silicon or silicon nitride
substrates. Silicon suffers from a disadvantage in this respect because in order to
remove the high fabrication stresses an anneal at about 1000°C is necessary. This
temperature is often incompatible with other materials fabricated on the substrate
for MEMs applications. On the other hand, silicon nitride can be produced with
much lower levels of stress which do not require annealing [20]. Finally, when
considering the economics of fabricating MEMs devices it is worth noting that this
is rather a small fraction of the total manufacturing cost. With these devices
packaging and testing accounts for about 90% of the total manufacturing costs.
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Example 1.1 The Wiedemann-Franz law
This states that the thermal and electrical conductivities of metals are related by
the equation

4-1,<jT

where K is the thermal conductivity in Jm^K^s"1 , a is the electrical con-
ductivity in Í7"1 m"1 and T is the temperature in Kelvin. L is the Lorentz number
which has the value 2.4 x 10~8 J f t K'V1.

Example 1.2 The Hagen-Rubens relation
This relates the optical reflectivity and electrical conductivity of a material. The
relation is only valid for longer wavelengths, that is in the infrared region of the
spectrum (v < 1014 Hz, A > 3 um)

R=i-2J**wy
V a

where R is the reflectance, which is dimensionless, v is the frequency in Hz and
a is the electrical conductivity in Í2"1 m"1.

Example 1.3 The Dulong-Petit law
This law relates the specific heat capacity of a solid to the number of atoms.
It was originally observed that the molar heat capacity of solids was similar for
a large number of materials, being typically 25Jmol~1Kr1 . Later, this was
explained in terms of the vibrational modes of the atoms within the solid. If each
atom has three degrees of freedom and behaves as a harmonic oscillator with
energy ¿BT along each of these degrees of freedom, then the internal energy of the
solid will be

U = 3N¿BT,

where N is the number of atoms per unit volume, k% is Boltzmann's constant
and T is the absolute temperature. If we consider a mole of the material, then
N = NQ = 6.025 x 1023 =Avogadro's number and the molar heat capacity
C = dl7/dT, is

C - 3No*B

= 24.96 J mol"'K-1
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Exercise 1.4 Macroscopic properties
These properties are simply the response of material to an external stimulus.
Permeability = magnetic induction/magnetic field, conductivity = heat flux/ tem-
perature gradient, elastic modulus = stress/strain, extinction coefficient = decay in
light intensity/number of wavelengths, heat capacity = change in temperature/heat
transfer.

Exercise 1.5 Empirical laws
Wiedemann-Franz: relates electrical conductivity to thermal conductivity
Hagen-Rubens: relates optical reflectance to electrical conductivity
Dulong-Petit: relates heat capacity to the number of atoms
Curie-Weiss: relates magnetic susceptibility to temperature
The continuum model provides no explanation for these observations

Exercise 1.6 Electronic and lattice contributions to properties
Heat capacity - dominated by lattice vibrations with a small component due to
electrons.
Thermal conductivity - in metals dominated by electrons, in insulators dominated
by lattice vibrations.
Permeability - determined by electrons.

Example 2.1 Elastic modulus of linear atomic lattice
In this situation, there is an equation for the potential energy with two unknowns
and two pieces of information which allow the unknowns to be calculated

Ep = a\a~^ — a^a ] .

At equilibrium separation a$ we must have the derivative of energy with respect to
displacement equal to zero, (d£p/d#)J() = 0. Therefore

0 = -9ai*ô10 + a2*ï2,

with #0 = 0.3 x 10~9 m. The dissociation energy is the difference in energy
between this equilibrium position, and complete separation of atoms at a — oo.
Therefore setting £(oo) = 0 and

Ep(tfo) = -4eV

- -6.4 x 10~19J

we obtain,

-6.4 x 10~19 = OL\O^ - r^tfô1,

with ¿/o = 0.3 x 10~9m. This gives two simultaneous equations in the two
unknowns. Solving these for a\ and a2 gives

ai = 1.57x 10- |05Jm9

«2 = 2.16 x l(T28Jm.
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If we consider the elastic modulus £Y as the derivative of the applied force Fapp per
unit area with respect to the strain e> then in the case of a linear lattice the concept
of 'pressure' is not very meaningful. Suppose we consider the effective cross-
sectional area per linear lattice chain to be 0$ (i.e. equivalent to a simple cubic
lattice), then the stress becomes equal to F/#Q, and therefore the elastic modulus is

ft.-U**).a*\ de J

and since the strain e can be represented as (a — a§)la§ where UQ is the equilibrium
separation of the atoms, and a is the separation at strain e,

de__±_
da ao

Therefore

£v-l(%)<*o\ da /,„

and Fapp = -Finternal = dEp/da, so

F 1 KM£Y = ̂ Urio

= (03xW9°W1"2W)

EY = 0.213 x 1012Pa.

The force on the lattice is related to the energy Ep(a) by the equation,

(dEp(a)\
( ¿a L:

where a\ = 0.99, UQ = 0.297nm is the lattice spacing at 1% strain,

F = 9ai^r10 - «2¿r2

= 1.92xl(r10N.

Example 2.2. Lattice stabilized by electrostatic repulsion
In this case consider the force on a given atom in the linear lattice due to its
interactions with its two nearest-neighbours. If x0 is the equilibrium separation,
A# is the displacement of one atom from equilibrium and q is the charge per ion,
then the force on that atom will be

F(AX) = 4^ ((*0 + A*)2 ~ (KO - Ax)2 j'
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which from the previous considerations is known to be equal to the negative
derivative of the energy Ep with respect to position x, that is — dEp/dx. The elas-
tic modulus

F V^£Y = -r T" 'A V<J*Ao

where A is the cross-sectional area. If we assume a simple cubic lattice then the
cross-sectional area per linear lattice chain will be XQ. Therefore, the elastic
modulus is

F l (dF\¿Y = — I j- I -
*oVd*A,,

We have defined the force constant k as

*-(£),-\ / X()

so that in this case £y = k/xo, then from the wave equation, Section 2.2.2, the
velocity of longitudinal waves v is given by,

LY2 /Fv/Y^v = «pa = ,/flio.
y m y m

Differentiating the expression for F, and allowing for the nearest neighbours, gives

t=W = 4-^-1
\dxjxo 47T60X¡'

giving

k = 7.36Nm~l.
Now, substituting in the values of &, XQ and w into the equation for velocity gives

v = 4.15 x K^ms'1

and the elastic constant is,

£Y = 1.47 x 1010Pa.

Example 2.3 Classical and Debye theories of specific heat
The Dulong-Petit law states that the specific heat capacity of one mole of material is

C - 3N0*B,

where N0 is Avogadro's number and &B is Boltzmann's constant. Since the heat
capacity is simply the derivative of the internal energy U with respect to
temperature,

c-duc~df'
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therefore the internal energy U is given by

17- [car

= 3N0£BT
with T-300 K,

L7 = 7477J.

In order to demonstrate that the Debye theory gives the classically expected
Dulong-Petit result at high temperature, we can start from the Debye expression
for the internal energy

_ 9NfeBT4 p™ x3

~0T~Jo e^T^'

where x = huj/k^T and xmax = 6&/T. At high temperatures x becomes small, so that
p* _ 1 ~ vC — 1 '•*>•' X.

Hence

u = 9M^pVd;c
#D Jo

_9NfeBT4/*3Y" /T

-~%-\3)0 '

leading to the following result for the internal energy of one mole (N = NO) at
high temperature,

U = 3N0£BT,

which is the classically expected result.
Using Fig. 2.9, which shows the variation in heat capacity with temperature, the

energy is then simply the integral JQ
T Cv dT = l/(T). At T = 300 K, T/0D = 0.70,

where the integral is clearly about half of the classical value of l/(T). Therefore

U(T) « 3750J.

Exercise 2.4 Lattice vibrations
The equation for harmonic motion is

-4+^=0.
where y is the position vector. In the special case of undamped simple harmonic
motion the value of b = 0. The difference between damped and undamped
vibration is therefore merely the value of the coefficient of the first derivative
term. In the case of a discrete lattice the equation applies to each individual atom:

«£+»$+«»-*
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where y¡ represents the position vector of the /th atom in the lattice. Solutions of
the above equation are exponentially decaying vibrations in which the rate of
decay of vibration is determined by the value of b/m

d^y_ b_ay_ k_
dt2+m dt+my~

Rewriting the coefficients as 7, the damping, and cj, the natural frequency of
vibration,

&*>%+<*-•
The following expression for y solves the differential equation

y=A^t¿^.

This can be demonstrated by substitution

$=(-27 + M(Ae-27ie^)at

4^=(i^-27)2Ae-27'eiu*at2-
= (iu; - 27)2y

= 27(-iu; + 2-y)y - u>2y,

which confirms the original differential equation. These equations can then be
applied to describe the displacement of each atom in a discrete lattice.

A boundary condition is a known constraint that can be applied to the equation
to limit the allowed solutions of the equation. The boundary conditions are
usually restrictions on displacement y in the above equations, but there can also be
restrictions on the values of dy/dt or d2y/dt2. For example, in the finite discrete
lattice, imposition of boundary conditions on the displacement of atoms at the
ends of the lattice shows that the number of identifiably unique solutions is equal
to the number of atoms.

Exercise 2.5 Interatomic potential
If the potential seen by each atom is given by
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Ep=±ku\

where u is the displacement from equilibrium,

17 d£ I.F = — = kuau
and,
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while strain e = u/a and therefore in this case the elastic modulus is strain
independent,

*-4
But, if Ep = \kuï- i fu3 then

F = ̂ L = ku-fu2
du

ku — fu2 ke f 7a = ~— = fe2,
a2 a

and in this case the elastic modulus is strain dependent

P kEy=--fe.

Exercise 2.6 Heat capacity
According to Einstein's theory of heat capacity

r w b ( *" Y exp(WfeBT)Cv = 3N0^B^J(expMBT)_1)2.

If hu = £BT, then

Cv = 3N0£B—^-T = 3N0feB
 27183.

(e-1)2 (1.7183)2

Cv = 3N0¿B x 0.92,

so at 0v = feu>o/&B the heat capacity Cv = 92% of the classical value.
Since ujQ = kftOv/h then for the various solids

Pb: ^ = 12.4 x 1012

Au: cjo = 22 x 1012

NaCl: UJQ = 36 x 1012

Fe: o;0 = 47 x 1012

Se: u;0 - 85 x 1012

C: ¿Jo = 242 x 1012.

On the basis of the harmonic model of the lattice

EP = ku2

& 11. ¿2u
F — —:— = —2ku = m -7-^-du dt2

d2u _ 2k
~dtï~~^U'
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the natural frequency of oscillation is therefore

2 2k
Wo = m '

and the Debye temperature is

_ ̂ o _ * fâ
*D-l¡--*¡Vm-

Therefore, high values of the Debye temperature 0& occur for high values of
the Debye frequency which correspond to large k (i.e. stiff materials) and low m
(i.e. light atoms).

Example 3.1 Drude free electron theory of metals
The Drude theory attempts to explain only those properties of a metal which arise
from the electronic properties. These include the relationship between electrical
and thermal conductivity known as the Wiedemann-Franz law. In this respect the
'theory' is, in fact, only a rather limited model of certain restricted properties of
metals. The main assumptions of the theory: (i) collisions between electrons are
instantaneous and elastic and this is the mechanism by which thermal conductivity
takes place; (ii) other interactions between the electrons or the electrons and ions
can be neglected; and (iii) the mean free time of electrons between collisions is
independent of the electron position and velocity. The Drude model gives the
equation of motion of the electrons in the metal as

d2* cbc ,
Wd^ + 7d^

where m is the electronic mass, e the electronic charge, £ the applied electric field
and 7 is a damping factor, which prevents the electrons from accelerating indefi-
nitely under the action of a field £. The Lorentz theory, by including the bound
electrons, arrived at an equation of motion of the form

¿2x ax ,
md?^di = kx = ̂

for the bound electrons where k is the measure of the binding strength of the
electrons to their atoms. The optical properties of a metal could then be described
in terms of both types of electron, that is both free and bound. The instantaneous
velocity of the conduction electrons at 300 K on the basis of this model is

„=«/*§?= 1 x 10s ms-1.
V m
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Example 3.2 Reflectivity based on Drude theory
As shown in the chapter, the dielectric constants e\ and e2 can be derived on the
basis of the Drude model in terms of the two frequencies v\ and v^

£lM = n2-k2^l-(-^-I\V^ + i/fy

,2(,) = 2«¿ = ̂ (^Y
V \ I/2 + VI /

where v\ is the 'plasma' frequency and z/2 is the 'damping' frequency. From classi-
cal optics the reflectance R is related to the dielectric constants by the equations

Je\+e\ + \-J2(Je\+el + ̂ }
R= V _.

^/e? + eÍ + l + ̂ 2(^g2 + ̂  + ei)

The predictions of the Drude theory can be seen easily from this equations
at very high and very low frequencies. However, at intermediate frequencies
the evaluation of R is somewhat cumbersome. Nevertheless, starting with the limit
as v —> 0,

lim e\ = l — v\lv\,
j/-*0

lim EI = oo.
i/-»0

Consequently, at low frequencies €2 dominates in the above equation for
reflectance R and therefore,

l i m R = l .
i/->0

At the high-frequency limit as v —» oo it is easily seen that,

lim e\ = 1
v—»oo

lim £2 = 0.
v—»oo

Consequently at high frequencies the reflectance goes to zero:

lim R = 0.
I/—» 00

A sketch of the value of R as a function of frequency z/ for the Drude model is
giverkin Fig. 3.6.

The Drude model for reflectance of metals works reasonably well for low fre-
quencies, specifically in the infrared range of the spectrum. It fails to account for the
optical properties of metals at higher frequencies, in the optical range and beyond.
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Example 3.3 Electrical and optical properties of a classical free electron metal
The resistive coefficient 7 is related to the mobility of the electrons by the relation

e
7 = -.

Therefore, inserting the value of /¿ for copper gives

1.602 x 10-|9C
3.5 x 10-3m2V-1s-1

7-0.46 x KT^NsnT1 .

The electrical conductivity a is itself related to the resistive coefficient 7 by the
equation

n¡e2

a = = Hfen,

and from the density, atomic weight and number of electrons per atom in copper
the number of conduction electrons in a cubic metre of copper is Nf «
8.5 x 1028 m~3. Therefore the electrical conductivity is

_(8.5 x 1028)(l.602x 1Q-19)2

°~ 0.46 x 10-16

CT = 0.476 X lO8^"1!!!"1.

The time constant between collisions of the electrons r is
m

T = —
7

_ 9.109 x IP"31

~ 0.46 x 10-16

r= 19.8 x 10~15s.

Exercise 3.4 Classical free electron description of resistivity

Number atoms per unit volume N = , x No
atomic weight

= 8,95x10^ x 6 0 2 x l o 2 6 m_ 3

6J.5

= 8.5 x 1028 atomsm~3

In copper each atom has one 'free' conduction electron:

Number of free electrons Nf = 8.5 x 1028 electrons m~3.
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The current density / is given by

/ = Nf«/drift

"drift = N^

fdrift = 0.74 x lO^ms'1

and if the relaxation time is r = 5 x 10~14 s then

_ m
P = Ñ^

pimp = 8.28 x l(T9í}m.

The resistivity of the pure metal is

ppm = 18 x 10-9ftm

Aot — Ppm H~ Pimp

= 26.28 x l(T9i)m.

Exercise 3.5 Mobility of classical free electrons
Calculate the mobility // of the electrons in each material using

^ = ie'
where a is given, Nf needs to be calculated, and e = 1.6 x 10~19 C

XT XT density .Nf = NA x :—-— x valence
atomic mass

X T 6.02 x 1026 x 8.96 x 103
 o r ..28 3Cu: Nf = —— = 8.5 x 1028 m~3.

63.5

Ag: Nf =
 6-02xl026

10
X

8
10-5xl°3=5.8xl0^m-3.

Au: Nf = 6.02x 10^19.32 x l Q 3 = 5 9 x i o 2 8 m _ 3

cd; Nf = 6 .02xlO^X 28.65xlQ3 x 2 = 9 3 x i o 2 8 m_ 3

Zn; Nf = 6 .02x l0^x7 .13x lQ3 x 2 = i 3 i x i o 2 8 m _ 3

65.4

A 1 X7 6.02 x 1026 x 2.7 x 103
 29 _3Al: Nf = — x 3 = 1.8 x l(r* m \
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Therefore the mobilities p, are

Nf (m-3) fj, = cr/Nf£ (m2 V~! s'1)

Cu 8.5 x 1028 4.1 x 10-3

Ag 5.8 x 1028 6.7 x 10-3

Au 5.9x1028 4.4 xlO-3

Cd 9.2 x 1028 0.9 x 10-3

Zn 13.2 x 1028 0.79 x 10~3

Al 18.0 x 1028 1.28 x 10~3

Cold working will increase the dislocation density and so increase the number
of scattering sites for electrons. This will result in increased resistivity. The
material can be restored to its former properties by using a strain relief anneal
(~500°C) to eliminate the dislocations.

Exercise 3.6 Absorption of light by a metal
The attenuation coefficient a is given by

a = -;log<(¿)-
In the case of the metal,

x = 50 nm

///o = 0.33

a = 50 xV» loge(033) = 22 x 106 m"1.

In the case of the glass

x = 0.2 nm

Ilk = 0.1

a = -^2lofc(°-1) = 11-5m"1-

To calculate the extinction coefficient k the wavelength of light is needed

E = 1.5 eV

£ = 0.24x 10~18J

v = E/h = Q362x 1015Hz

A = - = 826 nm,
v
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and

. Xa
k = 4¿
k = lA5 for metal

k = 0.756 x 1(T6 for glass,

n = 0.5 is given and therefore, for the metal

£l = n2 - k2 = (0.5)2 - (1.45)2 - -1.85

€2 = 2nk = 2(O.S)k = lAS.

Example 4.1 Fermi energy for a free electron metal
The number of states per unit volume of ¿-space is 1/47T3 which allows for one
spin-up and one spin-down state at each ¿-state. Assuming a spherically symmetric
distribution in ¿-space because the electrons are, by definition, completely free,
then the region of ¿-space between k and k + dk has a volume

dV - 47r¿2d¿,

and therefore the number of electron states between k and k + dk is simply this
volume multiplied by 1/47T3

N(k)dk = -^4<7rk2dk
47T*

-**.
7T2

This can now easily be transformed into an energy expression N(E) dE, since for
completely free electrons the energy is

* ^E = ̂ n->

so k2 = 2mE/k2, and dk = ±(2m/h2)l/2E1/2 dE.
Therefore, the number of electron states between energies E and E + dE is

obtained by substitution into the expression for N(k) d¿, giving

N(F\dF- — ( — V E1/2dEN(h}dh~2^\^2) h ah'

The total number of electrons per unit volume of space will then be the integral
of this expression, and is therefore

N-ZNoíB-^f^YV2- —N~2No(t'~3^(f)2 ) ~W
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This expression includes all electrons from energy zero up to an energy E.
Therefore, if the free electron Fermi energy is Ep it can be related to the total
number of electrons per unit volume Njot (=2No(Ec)) by the equation

EF = (37T2NTot)
2/-^.2m

It must be remembered that this expression for the Fermi energy only applies to
free electrons.

Example 4.2 Solution of wave equation in a finite square well
We consider a one-dimensional finite square-well potential of height Vo and
spatial extent 2a as shown in Fig. 4.4. and applying the time-independent
Schrôdinger wave equation,

-¿^ + VM*M = E*M.

which is simply a statement that the kinetic energy plus the potential energy equals
the total energy. We must now find the set of wave functions ^¡(x) which will
satisfy this equation with the given boundary conditions. Note that without
boundary conditions all wavefunctions if>(x) will satisfy the equation.

Within the box the potential is zero, so the wavefunction must satisfy the
equation

- £ £ -«•«.2m dx2

which has solutions inside the box of the form

V(x)=AJk*x + Be-{k*x,

where

ti-—E
' ~ h2

Outside the box the wavefunction must satisfy the equation

-£^W<,™

and therefore has solutions of the form,

#(*) = Ce*2X + De-*2X,

where

^ = -^(E-V0).
r)
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Now we use the boundary conditions to determine the coefficients A, B, C and D.
Outside the box, if we consider what happens when x —> oo we can look at the
wavefunction at infinity. We know that the probability of observing the electron
must remain finite so we must have

lim V(x) = 0.
#—>oo

So, outside the box we must have

#(*)=De~*2* forx>a

*(*) = Ce*2* f o r x < -a.

These are functions that decay exponentially with x in both directions moving
away from x = 0.

The potential well is centred at x = 0, so we must have a symmetic distribution
of the electrons with respect to x. The observed properties of electrons are
represented by the square of the wavefunction \^(x)\ . Therefore, the wavefunc-
tion squared should be invariant with inversion of x. This constraint merely
requires the wavefunction $(x) itself to be symmetric or antisymmetric with
respect to inversion of x.

We will continue by considering only the symmetric (or even parity) wavefunc-
tion solutions (a similar approach can be used for the antisymmetric wavefunction).
This imposes the following condition,

*(x) = #(-*)

A e*1* + B e"*1* - A e~'^x + B e*1*,

which implies that A = B. Therefore

9(x)=A(e]klX +*-'***)

*(*) = 2Acos(*i*).

We then need to apply the boundary conditions at x = ±a. The boundary con-
ditions merely require that \I> and d^/dx remain continuous throughout. There-
fore at x = a we must have

2Acos(kia)=De~k2a

and

-2kiAsin(kia) = -k2De~k2a.

These two conditions can then be used to obtain the coefficients A and D. A simi-
lar approach can be used at x = — a to obtain a relation between the coefficients A
and C. Dividing these equations gives

k\ tan(k\a) = k^
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and so substituting for k\ and ¿2 from the earlier results gives

2mE 2/(2m£)1/2 \ 2mE 17 x

lFtanH^r^(E-Vo)

E-^(^a)=V0.

The result is that for E > VQ the electrons are free with all possible values of
energy E although the wavefunction is perturbed in the vicinity of the potential
well. For E < VQ the electrons are contained within the box (with some quantum
tunnelling at the boundaries) and have a set of discrete allowed energies deter-
mined by the box parameters a and VQ. The situation is perhaps best depicted as
shown in Fig. 4.5.

If there is a periodic potential within the square well, then the situation can be
described as a perturbation of the above solution. In fact, this case quickly begins
to resemble a real solid, with a large square-well barrier at the boundary of the
solid and localized potential wells representing the 'atomic cores'. In this case,
which is depicted in Figs. 5.1 and 5.2, for energies less than Vi the electrons are
highly localized at the 'atomic cores.' For energies between V\ and V2 the electrons
are quasi-free conduction electrons because they can migrate throughout the 'solid'
but are constrained by the solid boundaries. For energies greater than V2 the
electrons are free and can have a continuous range of energies, but these allowed
energy states correspond to electrons that have completely escaped from the solid.

Only certain energies are allowed for the 'quasi-free' electrons in the Sommer-
feld model because the boundary conditions imposed by the potential well can
only be satisfied by certain values of the wave vector k. Since the energy is deter-
mined by the wave vector (to a first approximation) by E = h k2/2m, it follows that
only restricted energies of the wavefunction can meet the boundary conditions.

Example 4.3 Electronic specific heat of copper at 300 K
This can be calculated by finding the kinetic energy of the electrons according to
the quantum-mechanical free electron model and then differentiating with respect
to temperature.

The kinetic energy of the electrons is given classically by

Ek=fNeBT,

where N is the number of electrons. According to quantum mechanics only those
electrons close to the Fermi level can contribute to the specific heat, and there-
fore the value of N that should be used for specific heat calculations is smaller
than the total number of electrons. One way of determining the effective number
of electrons N* is to use the density of states close to the Fermi level and make
an estimation

N* = N(EF)£BT,
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so that if we suppose that N(E) does not vary too rapidly with energy close to Ep
and we include all electrons within an energy range kKT of the Fermi level, we can
find the effective number N* of electrons contributing to the specific heat capacity.
So the collective kinetic energy of these electrons is

Ek=N*f*BT

Ek=i*|T2N(EF),

and if kinetic energy is the only relevant energy of the electrons in this model, then
the internal energy 17 = E^, and the electronic heat capacity is therefore

C5 = ̂  = 3*S7N(EF).

Here, the density of states at the Fermi level is unaffected by temperature but we
still need an expression for N(EF). The approximate expression for N(£F) that can
be used is

"<*>-£•
where N is the total number of conduction electrons. Therefore

_ 9Nk*T
Cv-^E7"

You can also use the alternative expression (K2l2)Nk\(T/E?) for the heat capa-
city with only minor differences to the final numerical values. If we consider the
molar specific heat then N = NO, the number of conduction electrons per mole.
In a monovalent metal such as copper this number is equal to Avogadro's number.
We know from Example 4.1 that

E¥ = (37^Ntot)2^^-,
2m

where Ntot is the total number of conduction electrons per unit volume in copper.
This is 8.5 x 1028m-3, and hence EF = 1.13 x 10~18J ( = 7.05eV). Inserting the
values ¿B = 138 x 1(T23 JK"1, T - 300 K, N0 = 6.02 x 1023 electrons/mole and
EF = 1.13 x 10~18J into the previous equation we obtain the following molar
heat capacity for the electrons

Ce
v = 0.151 Jmol-'K-1.

If we consider the lattice specific heat Cl
v at low temperatures to be given by the

approximate expression obtained from the Debye model,

12** / T V
Cv = —ABNo^J,
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then the temperature at which the heat capacities of the electrons and lattice are
identical is,

r1 — rc
v>v — ̂  v

12^4 , .. / T V 9¿BNoT
—=— *BN<) — =—r= ,

5 \VD/ ¿h
and substituting the given value of the Debye temperature #o = 348 K

T2 - 9.942

T^3.15K.

A second 'mathematical solution' exists at high temperatures when

9 T
:rN0&B;^ = 3No¿B,L IY

where TF is the Fermi temperature (TF = EF/&B = 81.9 x 103 K) and hence

T = |TH

= 0.667TF

T = 54.6x 103K,

but the material will be gaseous at this temperature, so it is not a physical solution.

Exercise 4.4 Fermi energy of electrons

¡2É
"""= V~ST

For aluminium E = 11.7 x 1.6 x 10~19J and the electron mass is m = 9.1x
10~31 kg, therefore

Al: z/rms = 2.03 x 106ms~1.

Similarly for copper and gold, E = 7.0 x 1.6 x 10~19 J and 5.5 x 1.6 x 10~19J,
respectively, therefore

Cu: i/rms = 1.57x K^ms'1

Au: f/rms = 1.39 x 106ms~1.

The mean free time r between collisions is related to the conductivity

ma
r = NV?'

and mean free path length I can be found from the velocity and mean free time
between collisions

vrmsma
t = ^rmsT = KJ 2 .
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The number of free electrons per unit volume Nf is given by

= density x ̂ ^ x ̂  ^ ^26

atomic weight

Aluminium

Nf = 1.8 x 1029 electrons/m3

T = 7.3xl(T15s

t = VT = 15 x 10~9 m

Copper

Nf = 8.5 x 1028 m'3

r = 2.32x 10~14s

t = VT = 36 x 10~9m

Gold

Nf = 5.90x 1028 m~3

T = 2.5xl(T14s

( = VT = 35 x 10~9 m

Exercise 4.5 Diffraction of electrons at the Fermi surface by the crystal lattice
The wave vector k can be expresed in terms of the energy E by

2?r . 2mE

T = * = V^~
27rfe

•N/2ÍHE

The wavelengths at the Fermi surface are therefore

Na: Af = 0.69 nm

Cu: Af = 0.46 nm

Ag: Af = 0.52nm.

For diffraction, the following condition is needed: nA < 2<isin0, and therefore
if A > Id no diffraction can occur. Maximum wavelengths for the possibility of
diffraction in the three solids are

Na: Amax = 0.60 nm

Cu: Amax = 0.42 nm

Ag: Amax = 0.48 nm.
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Therefore no diffraction by the lattice occurs for the electrons at the Fermi energy
in these metals.

Exercise 4.6 Diffraction of electrons and validity of the quantum free electron
model
The energies and velocities of electrons that can be just diffracted by the lattice can
be calculated from the maximum wavelength values for diffraction determined
above. The wave vector k of an electron with energy E is

, 2-7T 2mE
è = T=V^'

and therefore,

47T2/?2 1 _(241 x IP"39)
^ m ~ ^ ~ A 2 J

and the velocity is given by

/2Ë
V m'

The energies and velocities needed for diffraction by the lattice are therefore

941 v 10~39Cu: J E = ^ i x i u 1 37x lo-i8 J = 854eV

(0.42 x 10-9)2

v= 1.73 x 106ms~1.

'941 v 1 O~39
Ag: £ = *" x 1U— = 1.046 x HT18J = 6.54eV

(0.48 x 10-9)2

1;= 1.52 x Herns'1.

941 v 10~39

Na: £= ^1 X 1 U
 0669 x l o-»j = 4.18 eV

(0.60 x 10-9)2

v= 1.21 x lO^s-1.

Since the energies at the Fermi level are below the energy needed for diffraction by
the lattice the free electron model with no scattering is a valid approximation for
the metals.

Example 5.1. Effective mass of electrons in bands
A free electron with wave vector &, energy E and mass m will, since it is free and
subject to no potential energy, obey the equation

-^V2t/>(*)=EV(*)
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and for a plane wave, free electron, with a wave function

Mx)=Ae[kx+Be-ikx

this yields the solution

fc2*2

h~ 2m'

which is a useful simple relationship between the energy E, wave vector k and
mass m.

When an electron is in a solid, however, its movement is affected not only
by any external electric fields but also by an internal potential V(x) caused by
the periodic atomic array and the other electrons. Therefore, the energy equa-
tion becomes

-h2

— V2^(*) + V(x)^(x) = EVX*).

Under these circumstances the simple relationship between E, &, and m given
above no longer holds.

However, there will still be some relation between E and £, and if we compare
this with the relationship which holds for free electrons, then we can introduce a
correction to this equation by describing the motion in terms of a free electron
with a modified effective mass,

F _&v
2m*'

where m* is the effective mass. This happens to be a useful practical result, but we
should not lose sight of the fact that it is an artificial procedure in many respects,
because it is not really the mass of the electron which is changing but the
relationship between E and ¿, and we are simply choosing to represent this
mathematically by incorporating the changes into the expression through the mass
of the electron.

If we now consider how the effective masses of the electrons in an energy band
are related to the form of the energy band itself, we can obtain another simple
relationship. We know that force equals mass times acceleration

?-m*-
df '

and the velocity can be represented as energy differentiated with respect to
momentum,

1 d£
" = * d * >
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therefore

c , d / l d £ \
F = m " — - —-

dt \h dkj

_ m* dk d2E
"TdidF*

But, we also know that force is the derivative of momentum with respect to time,

'-%-**»
17 *dkF = h — .dt

Equating the expressions for F gives

„•-_*_
(d2E/dk2) '

Here, (d2E/dk2) is the curvature of the energy bands in &-space. Therefore, the
effective mass of the electrons is determined solely by the curvature of the electron
bands, an interesting and rather surprisingly simple result.

Example 5.2 Origin of electron bands in materials
The description of the emergence of electron bands in solids can be approached
either as a perturbation of the free electron model or as a perturbation of the
isolated energy levels of bound electrons within a single atom.

As we have shown in Chapter 5 a free electron can have any energy value and
still satisfy the Schrôdinger (total energy) wave equation. However, once con-
straints are put on the electrons, in the form of arbitrary potentials, the allowed
energy states become discretized as a requirement for meeting the boundary
conditions. In the infinite square-well potential the energy levels closely resemble
those in an isolated atom because the electron is constrained by the potential to a
limited region of space. When the potential is finite the separation of the energy
levels depends entirely on how far below the top of the energy well the electron
energy is. Those deep-lying, low-energy states are widely separated. Those that are
nearer to the top of the well are closer together in energy. The free electron
perturbation works very well for the 'quasi-free' conduction band electrons in a
solid, which are those higher-energy electrons that migrate throughout the solid.

Alternatively, if we begin from the energy levels in a single isolated atom, then
these levels are completely separated, as in the infinite potential well. However, as
we bring together more and more atoms to form a solid, the potential wells of
these atoms start to overlap producing a perturbation of the potential well of the
individual atom. This perturbation is more significant for the outer electrons,
which are at higher energies, but is less so for the inner core electrons.
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The result is that for the outer electrons there begins to be some spatial overlap
of the electron wavefunctions, and there is a resulting coalescence of available
states, which then form an allowed energy band. If there are N identical atoms in
the solid, then for each atomic energy level there will arise N energy levels in the
solid. By Pauli's exclusion principle no two electrons can have an identical set of
quantum numbers and therefore the energies of these N levels will be different.
The result is an energy band that is a quasicontinuous range of allowable energy
states. This is shown in Fig. 5.5.

The key to the calculation of the band gaps is that they are equal to the Fourier
coefficients of the crystal potential. Therefore for the first band gap we need to
find the first coefficient of the Fourier series expansion. For a square wave of
periodicity a and with width of 0.8# and height V, the Fourier expansion is

oo / \

rt*)=Ao + £^cos( — V
n=\ V U '

The Fourier expansion for a periodic square well potential can be found in
'CRC Standard Mathematical Tables' by W. H. Beyer, 27th edn, 1984 on page
403. The expansion is

f(X) = -VÍ0.8 +^C^ sin(0.8«,r)cos(^) }.

So the first Fourier coefficient, with n = 1, is

Eg - V- sin(0.87r)

= 0.374V,

and since V — 2 electron volts the energy gap is,

Eg = 0.748 eV.

Example 5.3 Number of conduction electrons in a Fermi sphere of known radius
Since the problem states that the metal is a quasi-free electron metal, and has
a spherical Fermi surface in ¿-space, then the free electron approximation can
be used to give the density of states in a volume V of a material. As given in
Section 4.4.7, this is

dNo(£) V /2*A3/2
£l/2

d£ -D(t)-4^\h2) '

where V is the volume of the sample. In this case we will use only a unit cell of the
simple cubic lattice; therefore, if the lattice parameter is a the volume will be

V = a3.
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Integrating the above equation and setting E equal to the Fermi energy EF> this
gives the total number of conduction electron states:

*<*>=¿(l?)>-
Allowing two electrons per state, one with spin-up the other with spin-down, the
total number of conduction electrons will be N = 2No(Ep)

N—L/^yV2
N -37T>U 2 y F •

At this stage we note that for free electrons E — h2k2/2my so that the Fermi
energy is,

*-is.2m
Consequently the total number of conduction electrons is,

»-&*
At the Brillouin zone boundary of this simple cubic lattice we must have

Jb--kf~a-

Therefore, substituting in the values for V and kp we arrive at the following
number of conduction electrons per atom needed to just cause the Fermi surface to
touch the Brillouin zone boundary:

N = |= 1.047.

Exercise 5.4 Boundary conditions and solutions of the wave equation

^ = A exp(ifcc) + B exp(-ifoc).

Putting this into the Schrôdinger equation

h2 d2^
-^TT + V*=£lI>>2m áx¿

gives

— ¿2tf + (V - E)tf = 0,2m
which is a solution of the wave equation provided

2_2m(E-V)
h2 '
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When boundary conditions are applied, certain contraints on the allowed solu-
tions of the wavefunction are imposed with the result that there are restrictions on
the allowed values of k which meet the boundary conditions, and have restrictions
on the allowed energies.

In general, the wave function ^ is a complex number. The probability of
observation must always be a real number. The amplitude of a wavefunction |\I/|
is always a real number and, in fact, this magnitude represents the energy density
of the wavefunction at a given location. Therefore, it is postulated that the
probability of observation is |\I/| on \I>*\I>. This is the observable quantity while \I/,
being complex, is not observable. Note that this means two wavefunctions
^ = a + \b and ^ = a — ib, although physically distinct, will apparently seem to
be identical when observed, since both have \I/*\I> = <z2 + b2.

Exercise 5.5 Electrons in a periodic potential
If the periodicity of the crystal potential is expressed as

V(x + an) = V(x),

for all an = na where n is an integer and a is the lattice parameter, then we can
write Schrôdinger's equation

fc2 a2

"2^ d^*W + VW*W = E*W'

and for an identical wave function at x + an

h2 d2

~2m dx? ̂ (* + Un) + V(* + Un^(X + Un) = E^(pC + an)'

Since we require that V(x + an) = V(x) this leads to two simultaneous equations

-^•^9(x + an) = (E-V(x))9fr + an)2m dx¿

and

-£e*w=(£-y(x)mx)-
Solutions of the wave equation have the form

V(x)=Aelkx+Be-lkx

*(x ± an) = A clk(x±a"} + B e-^H

and therefore

^(x±^) = *(x)e
±ito",

and an = na, so that

V(x + na) = <!>(x)jnka.
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Now, if we impose boundary conditions so that the wavefunction $(x) must be the
same at both ends, x = 0 and x = L of the solid #(0) = \I>(L), and hence

tf(L) = tf(0)eiR = tf(0),

and, therefore,

2nir 2nir
~r=Na~'

where N is the number of atoms in the lattice (Na = L) and n is simply any integer.
If we impose a more restrictive boundary condition such that the wavefunction

will be the same at the boundaries of each unit cell, then \I/(0) = *5/(na) for any
integer «, including n = 1 and hence

*M = *(0)eiwAfl = #(0)

¿nka = j

2W7T
*• i

tf

and since

V(x + na) = V(x)emka

it follows that for any integer n

^(x^na) = V(x).

According to Bloch's theorem the wavefunction of an electron in a lattice should
obey

#(*) = u(x) exp(ifcc),

where u(x) has the periodictiy of the lattice, i.e. u(x) — u(x + no) and n is any
integer. The potential itself obeys

V(x) = V(x + na).

Now, on translating once around the entire array of N atoms

V(x) = V(x + Na).

If this is true, then

ty(x + Na) = u(x + Na) exp(i£(;t + Na))

V(x + Na) = u(x) exp(ifcc) exp(ikNa)

= V(x)exp(ikNa)

= *(*),

and therefore exp(i^N^) = 1 and hence k = In-rr/Na where n is any integer.
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If we have a wavefunction

Vk(x) = A exp(ifcc) + B exp(-ifoc)

then when k = 0,

Vo(x)=A + B,
but we must also have a finite probability of observing the electron when inte-
grating over all space.

f V*(x)V(x)dx=l.
J*I1.Y

The only way this can be satisfied is if A = B = 0, otherwise the integral will
be infinite.

Exercise 5.6 Electron energy bands
The first one is a metal because energy states exist at the Fermi level. The actual
diagram is of copper.

The second one is a semiconductor/insulator because the Fermi level lies in the
band gap. The band gap is 1 eV, so it is a semiconductor. The actual band structure
diagram is for silicon. Eg = 1 eV so that Athresh = hc/E = 1240 nm. For A < 1240 nm
the material is absorbent. For A > 1240 nm the material is transparent.

Example 6.1 Brillouin zones in a two-dimensional lattice
If the lattice parameters in real space are a = 0.2 x 10~9 m and b = 0.4 x 10~9 m,
then the reciprocal lattice vectors are

k --*,- a,

k --*y- b-

The reciprocal lattice of a rectangular lattice is also rectangular (see Fig. SI).
Dimensions of the first Brillouin zone are twice the lengths of the reciprocal

lattice vectors

kx = — = 31.4imT1

a

*y=y= 15.711m-1.

If the atom has a valence of 1 then it will have one electron per atom in the
conduction band. This conduction band is according to the statement of the
problem of a free electron sphere. In two dimensions the free electrons will occupy
a circle, the radius of this 'Fermi circle' is £F- Therefore

'Area' of the Fermi circle = nkl.
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ky=15.7nrrf1

Firet
Brillouin
zone

Second Brillouin
zone

Figure SI Brillouin zones of the two-dimensional rectangular lattice in reciprocal space, and the
Fermi 'sphere' superimposed on the zones.

The total number of available ¿-states contained in a free electron circle radius
¿F is simply the area of the Fermi circle 7r¿p- divided by the area of a ¿-state. The
area of each ¿-state is

A /27r\/27T\ 47T2

"-(TJ(T)-S-
Therefore, the number of ¿-states between zero energy and the Fermi energy £F in
this two-dimensional case is

No(EF) = ̂ *?.

The total number of electrons will be double this number because of the
possibility of accommodating a 'spin-up' and 'spin-down' electron at each ¿-state

N0(EF)=|^.
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Energy gap ¡
at zone
boundary

Highest occupied
state in this direction
does not touch
zone boundary zone „

boundary

Energy gap at
zone boundary

zone
boundary

Highest occupied
state touches
zone boundary
in this direction

Wave vector k

Figure 52 Electron band structure of the two-dimensional rectangular lattice.

And since the number of electrons per atom must be 1, No(£p) = 1 and
therefore,

i. /^
*"= V -ab

= I 2n
V0.08 x 10-18

= 8.86 ran"1.

Since the dimensions of the first Brillouin zone are kx=15.7nm~} and
ky = 7.85 run"1, the free electron sphere crosses the zone boundary along the ky
direction, but does not cross the zone boundary along the kx direction. The
electron band structure is therefore as shown in Fig. S2.

Example 6.2 Number of k-states in reciprocal space
Consider a simple cubic lattice with lattice parameter a and with N3 primitive
cells. This will give a cube of side L such that

L=Na.

If we apply periodic boundary conditions the allowed values of k are as follows:

h i, h n j_27r -u471" -L ,2N7r
kX,ky,kZ = 0, ± — , ± — , ± - - ' ± - | — .
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Ignoring the case k — 0, which is physically identical to k — IN/r/L, this gives N
allowed ¿-states for each of kX9 ¿y, kz. That is, there are N3 allowed ¿-states. Since
all of the allowed states can be represented in the first Brillouin zone in the
reduced zone scheme this means that the number of ¿-states in the first Brillouin
zone of the reduced zone scheme is N3. Alternatively, we may say that the volume
of ¿-space up to the Nth Brillouin zone is

*-(¥)•
Furthermore, it is known that the volume occupied by a ¿-state in reciprocal

space is

-(?)'•
Therefore, the number of allowed ¿-states is simply the volume of the ¿-space

representation of the crystal up to the Nth Brillouin zone divided by the volume
occupied by a single ¿-state:

No. of ¿-states = N3.

Example 6.3 Fermi energy of sodium and aluminium
If we assume that both metals are free electron-like, then in both cases the Fermi
energy is related to the wave vector ¿F at the Fermi surface by the equation

£K =£-*£.2m
The total number of ¿-states contained in a volume of ¿-space of radius ¿p is

equal to the volume of the Fermi sphere in ¿-space (f 7r¿p) divided by the volume
of a Brillouin zone (SyrVtf3) = (S^/V)

Klb\ (4^F/3)No(k*)=w/^>
N0(¿F) = ¿¿3,

where V is the volume of the specimen and a is the linear dimension of a unit cell.
Since each electron can have 'spin-up' or 'spin-down' the number of electrons that
can be contained in such a volume is twice the number of ¿-states:

N°<*F>=¿2*F-

If we consider a unit cell of each metal, then the volume of this crystallogra-
phic unit cell is V = (0.43 x 10-9m)3 = 79.5 x 10-30

m-3 for sodium, and V =
(0.4 x 10~9 m)3 = 64 x 10~30 m3 for aluminium. Within these unit cells there are
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effectively two atoms in a bcc lattice and four atoms in an fee lattice. Therefore,
the above unit cells contain 2 conduction electrons in sodium but 12 conduction
electrons in aluminium because aluminium is trivalent.

For the case of sodium therefore we must have NQ(¿F) = 2. and as

¿3 _ ¿7T2 -3
F " 79.5 x lo-30 m '

therefore

*F = 9.06xl09m-1,

and consequently the Fermi energy is

EP = k2k$/2m

(1.054 X10-3Y
*F~ 2(9.109 x lO-3ir- 0 7 x l u )

= 5.016 x 10~19J

= 3.13eV.

For the case of aluminium we must have NQ(&F) = 12 and so

¿3- ^
F ~ 6 4 x l O - 3 0 '

therefore

kf = 17.71 x lO9!^1

and the Fermi energy is,

(1.054 x 10-34)2
 9 2

£F = 2(9.109 x 10-31) (17 '71X10)

= 1.913 x 10~18J

E¥ = 11.9 eV.

Exercise 6.4 Brillouin zones
For free electrons the energy depends on the components of the wave vector
according to the following

E=^(k2
x + k2

y + k¡).

Consider, therefore, a simple cubic lattice, with lattice parameter a. Then, at the
zone boundary

k -- k -- k --*x-a, *y-a, *z-a>
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At a zone face,

*„=£, ky = 0, kz=0

F h* (**\
£l°0 = 2^UI

In a corner of the zone, kx = ky = kz = n/a

F *2 Í3"2}Ein=2^(^)-
Therefore

£111 _ ^
£100

If the Fermi surface just touches the Brillouin zone boundary, then k = ir/a, and so,
assuming free electron behaviour with a = 0.3 x 10~9 m£=f*2

2m .

=-(-T2m \aj

E = /-î = 6.7xlQ-^}Sma2

£-4.2eV.

The number of free electrons per unit volume is

**,-£(!?)>
Using the relation EF = fj2k^/2m

N0(E)=^

_VTT_
~ 3 ai-

So the total number of conduction electrons needed to just reach the Brillouin
zone boundary is

N0(£) - 3.88 x 1028 x V.

And if we consider that one atom occupies a volume a3, then the number of
conduction electrons per atom needed to just touch the Brillouin zone boundary is

7T
N0(£) = - electrons per atom.
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The density of states D(£) is given by

D(£)-_^^W-^^VD(£)-4^UJ ~4^U 2 J

D(£F)=_^L![=_^L
2<n2t)2 <* 2mt)2

So at the Fermi level, the density of states is

D(E , = y (9.1 X 10-31)

2(3.142)(0.3 x 10-9)(1.05 x 10'34)2

= 4.35 x 1046 x VJ-1,

and the density of states per unit volume is, therefore

^ = 4.35xl046J-1m-3

or

^ = 0.70xl02«eV-1m-3.

Exercise 6.5 Electron density of states at the Fermi level
If the electrons behave as idealized free electrons, then the density of states is

DŒ)--L(^YV2
D(£)-4^U2/ '

and so if EF = 7eV (= H-2 x 10~19 J), then the density of states at the Fermi level
is simply,

D(£F) - f^j\(l.64 x 1036)3/2(1.12 x 1(T18)1/2 = 56.27 x lO45]-1!^3

= 9 x 1027 states per eV per cubic metre,

*»-£(^r
So that

_ (3^N\2/i t>2
Ef = (—) *a-

Now, assuming N/V = 6.0 x 1028 m~3

£F = 9.09x l(T21J = 5.67eV.
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Exercise 6.6 The de Haas-van Alphen effect and the Fermi surface
If the susceptibility of gold and aluminium exhibit periodicity in field A(1/B) of
2 x lO'^T"1 and 1 x 10~5T~l respectively, calculate the external area of the
Fermi surface normal to the field, the wave vector &F

 at the Fermi surface and
the Fermi energy EF in electron volts, assuming that both can be treated as free-
electron-like

AO/e, = ̂ J-n /iext

_2ne 1
ext ~ ~T Â(Ï7B)

= 9-54xl°15Â(ï/B)m"2-

For gold, A(1/B) = 2 x 10~5 T~ l and therefore

Aext = 4.77x 1020m-2

jfeF = ,^=1.23xl010m-1

V 7T

£F = *M = 926 x iQ-19 J^ 5.8 eV.
2m

For aluminium, A(1/B) of 1 x 10~5T~ l, and therefore

A e x t-9.54x 1020m-2

*F = ,^=1.74xl010m-1

V 7T

B F =?A=1.85x l<r18J=11.6eV.2m

Example 7.1 Approximation to the Fermi function in semiconductors
The Fermi function f(E\ which describes the probability that an electron occupies
an energy level E at temperature T, is

f(E) = l+exp((E-EP)/k*T)9

where EF is the Fermi level. If we consider this simply in terms of a probability as a
function of the difference in energy AE then

f(AE) = 1 + exp(AE/*BTV
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In the example under consideration the band gap is 0.5 eV. Considering the
lowest-available energy state in the conduction band and locating the Fermi level
at the midpoint of the band gap, it is clear that the lowest possible value of AE for
states in the conduction band is 0.25 eV above the Fermi level,

AE > 0.25 eV.

Consequently for all energy levels in the conduction band AE/k%T > 9.67 and so

^fê) * 15'8 x 103-

Therefore the exponential term dominates the constant term in the denomina-
tor and,

^(A£) = l + exp(A^BT)"eXp(if)-

Since this is true for the energy levels just above the band gap it will also be true
for higher-energy levels, and for temperatures of 300K and below. Note,
however, that for electrons at the bottom of the conduction band AE = Eg/2 and
not AE = Eg so that the probability of occupancy of energy levels at the bottom of
the conduction band can also be written

w—KaO-
Example 7.2 Temperature dependence of conductivity in intrinsic semiconductors
If the wavelength of the absorption edge is A = 1771 nm, then the band gap energy
will be

v hc

*•"

_ (2.99 x 108)(6.62 x IP"34)
~ 1.771 x 10-6

= 1.12xlO-19J

Eg = 0.698 eV.

Since the material is described as an intrinsic conductor, its conductivity will
obey the relation

f Es \C7 = <70exp --r^p 1.V 2kzT )
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If we let the conductivity increase by 30% at a temperature T + AT, then,

exp(-£g/2feB(T + AT))
exp(-Eg/2¿BT)

/-Eg/ 1 lYv13 = exp(âi(f+Âf-TjJ'
therefore

T + AT-^-^0.3,)-1

T + AT = 305.9 K.

Consequently, a temperature rise of AT = 5.9 K from 300 K to 305.9 K will lead
to a 30% rise in conductivity.

Exercise 7.3 Electronic properties of gallium arsenide, silicon and germanium
The following is a comparision of the electronic properties of the three materials.

Band gap (eV)
Electron mobility (m2/Vs)
Effective mass of electrons m*/me

Effective mass of holes m*/m^
k at valence band maximum
k at conduction band minimum
Electrical conductivity at 300 K (Q~} rrT1)
Absorption edge (nm)

Si

I.I
0.15
0.97
0.6
0
0
9x IO'4

1 104
(IR)

Ge

0.7
0.39
1.64
0.3
0
at zone edge in ( 1 , 1 , 1 )
2.2
1873
(IR)

GaAs

1.4
0.85
0.07
0.5
0
near zone edge in ( 1
1 x I0~6

871
(visible)

,0,0)

Applications in which gallium arsenide has an advantage over the others include
those involving emission and absorption of light (e.g. lasers and optical com-
munications), in which the direct band gap gives a higher probability of transition,
and those requiring fast response times, in which the high electron mobilities in
GaAs are advantageous (e.g. high-speed computer applications).

Since the relation between the electron energy E and the wave vector k is
given as

E=Ak2,
we can calculate the effective mass from the equation,

m* = —r ,
(d2E/dk2)

where

d2£-2A
dtf-2**
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therefore

-£•
and with A = 7.5 x KT38 J m2,

m* = 74 x 10"33 kg,

and since the rest mass of an electron is

m0 = 9.1 x l(T31kg

giving

m*/m0 = 0.08.

Exercise 7.4 Electron band gap and conductivity at finite temperature
The number of electrons per unit volume in the conduction band is given by,

N = NoeX"(-2fe)

N = (2.5 x 1025)exp(-13.52)

N = 33.4xl018m-3,

and conductivity is given by

a = Nejji

= Ne?(//e + A¿h)

<j=12.33 ÍT1 m"1

and

p = 0.081 fim.

In order to get a = 100 fi"1 m"1 we need to add donors or acceptors to make up
the difference between this and 12.33fi~1 m"1. If Nj is the number density of
donors,

X T 100-12.33
Nd = ep
Nd = 2.38xl020m-3.

For the number of acceptors Na the calculation is similar, except ¿¿ is different

X T 100-12.33
Na = ep,
Na = 5.48 x 1022m~3.
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Therefore, different number densities of acceptor or donor impurities are needed
to reach the same conductivity.

Exercise 7.5 Impurity levels and resistivity of semiconductors
Due to compensation, the acceptors will negate the effect of an equivalent number
of donors. Therefore, the effective number density of donors Nae =N¿- Na,
Nd - 1022, Na - 5 x 1021,

Nde = 5 x 1021 m~3

/ AE\
Nc^Ndeexp^- —J

= 5 x 1021exp(-5.797)nT3

Nc = 15.18 x 1018irT3

a — Nefj,

(T = OA85tt-lm-}

and therefore

p = 2.Q6ttm.

Exercise 7.6 Effect of temperature on a pn junction
As shown in the text, the ideal diode equation is

>—¿His?)-1)-
When temperature changes, however, /s is also a variable. So from eqn (7.47)

/tot(T,Vapp) =/s(Eg,T)(exp(^) - l).

In the forward-bias region, the term (exp(eV¿pp/kzT) - 1) dominates the tem-
perature dependence. In the forward-bias region the current decreases with
temperature for a given voltage Vapp.

In the reverse-bias region, however, exp(eVapp/£BT) < 1 when eVapp/k^T is less
than -3. This is clearly true for Vapp = -0.3V. Therefore, in the reverse-bias
region it is the temperature dependence of/s =J00exp(-Eg/k%T) which domi-
nates, so that/tot(333) ^/tot(293) x [/s(333)//s(293)]. Therefore using eqn (7.54)

A.-/--p(-&)MT5?)-'>
where /œ is temperature independent gives

/.CE.T) =/„«*(-A),
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and taking the ratio of/s at 333 K and 293 K gives

I (333) - I (293)CXp(~£g/333*B)ys(333)-ys(2y3)exp(_£g/293¿B)

= ;s(293)exp(-|(¿-¿)),

and Eg/¿B = 13.6 x 103 and

(¿-¿) = -4-lx10"4'
therefore,

/tot(333)=;tot(293)exp(5.56)

= /tot(293) x 260

= 0.26mA.

So the current in the reverse-bias region increases with increasing temperature.

Example 8.1 Drift velocity of conduction electrons
If we use the free electron approximation, then the following relation can be used,

1 N*2

- = a = TP,
p m

where p is resistivity, a is conductivity, N is the number of conduction electrons
per unit volume, e is the electronic charge, m the electronic mass and TF is the
mean time between collisions at the Fermi level.

If we let t be the mean free path of the conduction electrons then,

i
Vf=—,

TF

where v? is the Fermi velocity. Therefore

_ Wfp
p = Ne*t'

The energy £F and velocity vF of electrons at the Fermi level are related by the
equation,

EF = 2»ifF,

so

v? = \/2EY/m,
and substituting £F = 1.922 x 10~18 J (= 12 eV) and m = 9.1x 10~31 kg

t/F = 2.05 x 106ms~1,
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and rearranging the equation for the resistivity

f=mvL
Ne2p'

This means that we need to calculate N, the number of conduction electrons per
unit volume. Since each atom gives three conduction electrons to the conduction
band

N = 3Na,

where Na is the number density of atoms. The density of Al = 2700 kg m~3 and
the atomic weight is 27. Therefore 6.02 x 1026 atoms weigh 27kg. Hence, the
number density of aluminium atoms is

Na = 6.02 x 1028 atoms per m3,

and the number of conduction electrons per unit volume N is three times greater,

N = 3Na

N = 1.806x 1029m~3

The mean free path length is then,

f =
 mv?
Ne2p

(9.1 x 1Q-31)(2.05 x 106)
~ (1.806 x 1029)(1.602 x 10-19)2(3 x 10~8)

I =13 Ax 10~9m.

The mean free path of the electrons is related to the mean drift velocity v¿ under
the action of an electric field £. The current density / is given by

J = oC,

where a is the conductivity. Furthermore,

/ - JSfei/d5

where N = number density of conduction electrons, e = electronic charge and
VA — drift velocity:

v = ̂  = -^-d Né? pNe

= (1 x 103)
~ (3 x 10-8)(18 x 1028)(1.6 x 10-19)

- 1.15ms-1.
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Example 8.2 Conductivity in intrinsic and extrinsic semiconductors
The problem states that the doped semiconductor, the n-type germanium, con-
tains 1023 ionized donors per cubic metre. This means that it has 1023 electrons
per cubic metre in the conduction band. The intrinsic semiconductor will have a
number n of electrons per unit volume in its conduction band, where n is deter-
mined by the temperature and the electronic band gap.

The conductivity of the extrinsic germanium <jex is determined only by the
electrons according to the relation,

<jex = Nepc

where N is the number of electrons per unit volume in the conduction band, e is the
electronic charge and // is the electron mobility. In this case, N = 1 x 1023 m~3,
e= 1.602 x 10~19C and //c *E 0.39 m2s~1 V-1 for electrons, and ¿¿h = 0.19
m2s~1V-1 for holes.

In the intrinsic germanium the conductivity is determined by both the electrons
and holes, and is given by

(Tin = eNçfo + eNh¿xh,

where Ne is the number density of electrons in the conduction band and /xe is their
mobility, and NH is the number density of holes in the valence band and ¿¿n is
their mobility. It can reasonably be assumed that Ne = Nn = N in an intrinsic
semiconductor, and also that e is the same for electrons and holes:

¿Tin =Afe(/ /e+//h) .

The number density of electrons in the conduction band N can be obtained
from thermodynamic considerations. Using Fermi-Dirac statistics the number
density is then given by the equation,

N(E) - 2f(E)D(E)

= 2 i (2?L Y V
l+exp((E-EF)/*BT)4U2fcV

and assuming that the exponential term in the denominator is much greater than
unity,

X 7 , O N ~ ! í2m\3/2
Ki/2 í-(E-Ef)\

N(£)^U) E /GK-nwH-

Integrating this equation, assuming that E = k%T and E — EF = £g/2 for the
conduction electrons at the bottom of the conduction band, leads to,

-H!?r<^f-(a>
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Then, rearranging and correcting for the effective mass of the electrons gives

N - i ( ̂ B fY^yVexp/^
4 Ufe2 ) \™) P\2kKTj-

The first term on the right-hand side is a constant with value 4.82x
1021 K~3/2 m~3 so this gives the final expression for N as

N = 4.82 x 1021 (^Y/2T3/2expf-^|V\rnoj \2kvTJ

where m* is the effective mass of electrons and m0 is the rest mass of free
electrons:

ai,, = 4.82 x 1021 ( — } T3/2^e + //„) expf ̂ -}\m0J \2kzTJ

and (m*/m0) « 0.8, T = 300 K, /¿e = 0.36 m2 s~l V'1, /xh = 0.18 m2 s-1 V'1, £g =
0.7eV (1.12 x 10~19J), e = 1.602 x 10-19C. Therefore,

ain - (4.82 x 102I)(0.71)(5196)(1.602 x 10~19)(0.58)exp(-13.53)

crin =2.2i]~1m~1

and
(Tex - (1 x 1023)(1.602 x 10~19)(0.39)

-6.248 x lO^^m-1.

Therefore, the ratio of extrinsic to intrinsic conductivities is,

aex/<7in - 0.3 X 104.

Example 8.3 Thermo luminescence and lifetime of electrons in traps
The depth of traps below the conduction band is AE, such that,

-™-Mg)
therefore,

AE = £BTloge(sr)

AE = (1.38 x 10~23)(273)(63.70)

AE = 2.4x 10~19J
A£ = 1.5eV.

So the depth of traps below the conduction band is 1.5eV (or 2.4 x 10~19J).
Using the empirical relationship of Urbach, the temperature T*, at which the peak
of the glow curve occurs is,

T* - 500AE,
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where T* is measured in Kelvin and AE is measured in electron volts. Therefore

T* = 750K,

or 477°C.
The lifetime r(T) of electrons in traps at a given temperature T is

^Hêf)
Therefore, if the lifetimes at 273 K and 373 K are compared,

r(373) exp(A£/373¿B)
r(273) ~~ exp(AE/273£B)

/AE/ 1 1 \\

= enM373~273j>

( 2 4 x 10~19 \
í 38 x 10_23 (0.00268 - 0.00366) J

= (1.0x 1010)exp(-17.04)

r(373) - 3.96 x 102

= 396s.

Exercise 8.4 Electron and lattice contributions to the thermal conductivity
Thermal conductivity of Ge is given as K = 80 Wm"1 K"1 and electrical resistiv-
ity is given as p = 1 x 10~5 Í7m, henee electrical conductivity is a=\lp =
105íí~1m~1. From the Wiedemann-Franz law, we can calculate the electronic
contribution to thermal conductivity

^ = L = 2.4xl(T8

(71

Ke = LaT

Ke = 0.732 Wm^K'1.

The electrical contribution Ke is therefore much smaller than the lattice contri-
bution K\

K1/Ke = (Ktot-Kc)/Kc = 109,

or Xe comprises 0.92% of the total thermal conductivity.

Exercise 8.5 Classical explanation of thermal conductivity
Determine the thermal conductivity of a metal, assuming r — 3 x 10~14 s at 300 K
and the number of free electrons is Nf = 2.5 x 1028 m~3.
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The thermal conductivity of a metal can be expressed either in quantum or
classical terms:

-2L2
Quantum: K = —^7YNf3w

U2

Classical: K = ̂ TrNf.m
Inserting the appropriate values,

Quantum: K = 155Js'1 irT1 K'1

Classical: K = 140.9JS-1 m'1 K"1.

Exercise 8.6 Mean free path of (free' electrons
The mean free path of electrons I in a metal is related to the thermal conductivity
Kby

K = \c*vt,

where v is the velocity of the electrons. This velocity can be determined from the
Fermi energy, since only electrons at the Fermi level contribute to the conduction
process

/2£^
V m '

Therefore,

3K_3x rw
c*v c* y 2ÊF

Now, an expression is needed for the electronic heat capacity. We know that the
classical expression for the lattice heat capacity above the Debye temperature is

4 - 3N£B,

where, in this case, N is the number of atoms per unit volume:

N = : x Avogadro's number
atomic wt.

= !2*» 6.02x10* or'
lUo

N = 5.85xl02 8m-\

Therefore,

4 = 2.42 x lO^m-'K-1,
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and using the given relation c* = (0.01)4 gives

^ = 24.2xl03Jm-3K-1 .

Consequently,

3_K rw_
ce

v V2EF '

and the Fermi energy £F = 5.5 eV = 8.8 x 10~19J, and thermal conductivity
K-410Js~1m-1K-1 gives

¿ = 36.5 x 10-9m.

Example 9.1 Optical properties of metals and insulators
The various optical constants a, 5, £, e\¡ and e2> can be determined from the
refractive index n and the extinction coefficient k by the following equations

47T&
a = —— m

A
o=Am"'4irk
R = (n-lf + k2

(n + I)2 + k2

ei = «2 - k2

62 = 2nk.

The values for the four materials, as calculated from n and k at A = 1240 nm
(ku = 1 eV), are

Material

1
2
3
4

n

1.21
0.13
1.51
1.92

k

12.46
8.03
I . l 2 x IO'6

l . 5x IO'6

R

0.94
0.99
0.04
0.10

a

O . I 2 6 x I09

0.08 x I09

11.35
15.21

Material

1
2
3
4

d

7.92 x ICT9

I2.28x IO'9

0.088
0.066

£i

-153.8
-64.5

2.28
3.69

£2

30.15
2.09
3.4 x I0~6

5.8 x IO'6

Materials 1 and 2 have very high reflectance R and high absorption £2 at 1 eV
and are therefore metals. Both materials 3 and 4 have low reflectance R and
absorption £2>

 and a very low extinction coefficient k. These therefore must have a
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band gap greater than 1 eV which prevents absorption of light at this wavelength.
Both are therefore semiconductors or insulators. In fact, material 1 is aluminium,
2 is gold and 3 and 4 are different types of glass.

Example 9.2 Classification of principal electronic transitions
The principal types of electronic transitions that can occur are as follows:

Interband transitions
(i) High-energy transitions (from bottom of valence band to top of

conduction band)
(ii) Band gap edge transitions (from top of valence band to bottom of

conduction band).

Impurity level transitions
(iii) Exciton generation (from valence band to trap)
(iv) Impurity level excitation (from trap to conduction band).

Intraband transitions (metals only)
(v) Transitions within partially filled band.

Characteristic colours
The characteristic colours of materials are determined mainly by the band gap
energy. Absorption, and hence reflectance, can only occur when there is an allowed
electronic transition of the appropriate energy. Therefore, in large band gap mate-
rials (e.g. diamond) all optical wavelengths are transmitted. As the band gap
becomes smaller, however, certain wavelengths at the shorter wavelength, higher-
energy end of the spectrum start to get absorbed. This can lead to green, yellow,
orange, and red transmission as the band gap decreases. Finally, the transmission
in the visible range goes to zero as the band gap falls below the visible red end of
the spectrum at about 1.7 eV, leading to a black colour.

Colours by reflection, however, will be different because absorption of a given
wavelength allows it to be reflected. Therefore, semiconductors with band gaps in
the range 2.5-3.OeV may appear bluish by reflection but yellow or orange by
transmission.

Certain coloured metals such as copper and gold also have their reflectances
altered by the presence of characteristic interband transitions at the appropriate
energies to cause a yellow or reddish tinge in their reflectance spectrum.

Example 9.3 Identification of material from optical absorption spectrum
The optical spectrum is that of an insulator or semiconductor because of the low
absorption at long wavelengths (low energies) and higher absorption at short
wavelengths (high energies).

The absorption edge, which corresponds to the energy at which electrons can
just begin to cross the band gap occurs in this material at about 0.75 eV, where the
absorption increases from zero as the photon energy increases. From the data on
the band gaps and the absorption edges of the three materials A, B and C, as given
in the table, the spectrum must correspond to material B.
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In fact, the remainder of the data in the tables is irrelevant for interpreting
which of the materials corresponds to the given spectrum.

The material will be transparent for wavelengths at which the absorption £2 is
close to zero. This corresponds to all wavelengths longer than 1653 nm (equiva-
lent to 0.75 eV). As a result it will be opaque, and hence reflecting, for all shorter
wavelengths, including the optical region of the spectrum (750-450 nm).

The materials are: A - silicon, B - germanium and C - gallium arsenide.

Exercise 9.4 Equation of motion of 'free' electrons and the absorption of light
The equation of motion for electrons, using the classical free electron model,
under the action of an external field £o exp(iutf) is

d2* cbc ,
m^j + 7— + fer = ̂ o exp(iutf).

The physical signficance of the terms is:

'eCo exp(iu;i)' is the instantaneous force on the electrons due to the
electromagnetic field

'7' is the damping coefficient which dissipates the electron energy and hence
slows the motion (7 = 0 is undamped)

'&/ra' is the square of the natural frequency of oscillation (k = mu^) of the
electrons.

The solution is the sum of a transient and a steady-state term. The transient term
is,

«^^(-¿^('(«'¿r')'
which decays away exponentially with time constant IwAy.

The steady-state term is

x = —=?- {sin(utf - 0) - i cos(utf - (/>)},
o;Zw

where Zw = [7
2 + (wm - *M2]1/2.

Amplitude
The amplitude of oscillation of the electrons is

A= . *»
• yVV + ((J-m - k)2

Under these conditions it is easily seen that resonance must occur when the
denominator of the expression for A reaches a minimum. This occurs when

2 k T2

W ~m~2m^'
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and since k = muj^

w2=w°-¿^
where LJQ is the natural frequency of the undamped, unforced electrons.

Amplitude resonance therefore occurs when uj = ujr

Wr=v^-2Ï-
Resonance can therefore only occur when the damping coefficient is sufficiently
small that

72 < 2m2UQ
or

72 < Imk.

Phase is given by

. / muj - (kl<J) \
ó = arctan

V 7 /

(mu2-k\
= arctan .

V 7^ /

The penetration depth of light or other forms of electromagnetic radiation is ó,
given by the Lambert-Beer law:

/ = /oexp(-|),

where 6 = I/a and, furthermore, we know that

K X
6 = 4ïk>

when A = 589 nm and k = 6

c 589 x 10-9

a = ^ m

247T

6 = 7.81 x 1079m.

Exercise 9.5 Effects of differences in band gap on optical properties of
semiconductors
(a) If the band gap is 2.4 eV, then all energies above 2.4 eV are absorbed, and all

energies below are transmitted. 2.4 eV corresponds to the blue/green region of
the visible spectrum. Therefore, yellow, orange and red are transmitted.
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(b) As dopant is added, the amount of electron donors increases at a depth of
1.4eV below the conduction band. Therefore, the number of photons in the
range of 1.4-2.4 eV that are transmitted is gradually reduced. The colour will
gradually fade from yellow to black because the intensity of light that is
transmitted will decrease with dopant concentration.

(c) Considering the effects of temperature on the band gap, £g =
2.56- (5.2 xlO-4)TeV:

T(K)

0
200
400
600
800

1000
2000

Eg(eV)

2.56
2.46
2.35
2.25
2.14
2.04
1.52

Colour

green/blue
green
yellow/green
yellow
orange/yellow
orange
red

The initial wavelengths transmitted are green and all longer wavelengths. As the
temperature is raised, the shortest transmitted wavelength is gradually increased,
so that the range of energies transmitted is reduced. This means that the colour
changes from green/blue to orange as shown in the table.

Exercise 9.6 Optical properties of direct and indirect band gap materials
Transmission of light through 1 utn thin layer of PbS.

M^m)

2.065
2.155
2.255
2.360
2.480
2.610
2.755
2.915

E(eV)

0.597
0.572
0.547
0.523
0.497
0.473
0.448
0.423

Transmission
C//o)

0.228
0.251
0.281
0.320
0.368
0.445
0.533
0.728

«<m -')
(I06)

1.478
1.382
1.269
1.139
0.999
0.810
0.629
0.317

a2(m-2)
(I012)

2.18
1.91
1.61
1.298
0.998
0.656
0.396
0.100

The attenuation coefficient a is obtained from the Lambert-Beer law,

— = exp(-ox)
h

1, fh\
- = -log(T|

Now, plotting the absorption in terms of the attenuation coefficient a against the
photon energy tjuj gives either the form of direct band gap attenuation

a = ad(fco;-Eg)1/2,
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or the form of indirect band gap attenuation

a = a\(huj — Eg)2.

In this case the plot of a2 against ku gives a straight line with intercept 0.416 eV
implying a direct transition (direct band gap) with energy gap 0.416 eV.

Example 10.1 Strength of exchange field in iron
A relationship exists between the Curie temperature of a ferromagnet and the
exchange interaction. The exchange field Hex is given by

Hex = OM,

and the paramagnetic susceptibility is

C _ M
*~f^7;~H + Hex'

where C is the Curie constant, T is the absolute temperature and Tc is the Curie
temperature,

_ Nnom2

3¿B '

where N — number of atoms per unit volume, //o is the permeability of free space,
&B is Boltzmann's constant and m is the moment per atom. Rearranging the Curie-
Weiss law equation gives

aN^m2

Tc = aC = -^T~'
and therefore,

3feBTc

NjUora2 "

Since Hex = oM, and within a single domain the magnetization is saturated so
that M = MS = Nra this leads to

Hex = oMs

= 3¿BTCto*n '

The value of m needs to be in A m2 instead of Bohr magnetons. This can be
calculated from the relation 1 Bohr magneton = 9.27 x 10~24 Am2. Therefore for
iron, m = 2.04 x 10~23 Am2

Hex = 1.68 x H^AnT1,

which is a surprisingly high value of magnetic field.
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Example 10.2 Comparison of the magnetic moments on atoms in bulk form and
in isolation
The values of saturation magnetization Ms of the three metals in bulk and the mag-
netic moments of the isolated atoms of each metal are given in the table below.

The magnetic moment per atom in the bulk, which is calculated from the
saturation magnetization by dividing by the number of atoms per unit volume in
the metal, is also shown.

Fe2+

Co2+

Ni2+

Isolated ¡on
magnetic moment
(Bohr magnetons)

5.4
4.8
3.2

Saturation
magnetization of
bulk material
(A/m)

1.71 x I06

l.42x I06

0.48 x I06

Calculated
moment per
atom in bulk material
(Bohr magnetons)

2.22
1.72
0.54

The important result here is that the magnetic moments on the atoms in bulk
form (e.g. solids) are substantially different from the magnetic moments on the
same atoms in isolation. Therefore the interactions between the electrons on atoms
in bulk material cause significant modifications of the observed magnetic moments.

If we consider the electronic structure of the iron, cobalt, and nickel, we find
that the isolated atoms have the following numbers of electrons in the outer shells:

3d 4s

Fe 6 2
Co 7 2
Ni 8 2

The magnetic properties of these metals are due to the d electrons. However, in
bulk material the 3d and 4s electrons occupy similar energy levels, and in fact the
broadening of the 3d and 4s levels in the solid causes these levels to overlap. This
leads to s-d electron mixing, also known as 'hybridization.'

In the solid, therefore, the 3d and 4s levels can be treated as a single
energy band, with twelve possible electron states. The difference in the number of
spin-up electrons n+ and spin-down electrons «_ will give the magnetic moment
per atom:

Fe 2.22 8
Co 1.72 9
Ni 0.54 10
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Consequently, the number of spin-up and spin-down electrons in the 3d/4s
band is

Spin-up Spin-down

Fe 5 . I I 2.89
Co 5.36 3.64
Ni 5.27 4.73

Example 10.3 Spontaneous magnetization and the exchange field
The Langevin expression for the magnetization M of a classical paramagnet with
localized magnetic moments m on each atomic site is

A* K7 / J^mH\ f k*T MM = Nm< com . ^ - — >.
\ \ k*T J \^mH)}

If an exchange field Hex is introduced that is proportional to the spontaneous
magnetization M within a domain, then the effective field becomes

Heff - H + oM.

Substituting this into the Langevin expression gives

** XT Í ,flM>m(H + aM)\ / k*T \\M = Nw^coth ——-j—- - }.\ \ k*T ) \^m(H + cM)Ji
For spontaneous magnetization ordering will occur in the absence of an external
field. Setting the external field H equal to zero in this equation gives,

M xr f ,( ^moM\ k*T \M = Nw^coth ^ =—1— \[ \ k%T ) nomaM )

., X T f ! /uoam2N\ k%T }
M-Nm^coth ^ ?—j \.[ \ k%T ) ^aNm2}

In order for ferromagnetism to occur, within a domain there must be a
spontaneous magnetization. Consequently dM/dH must be infinite at the origin of
the M, H plane:

/dM\ Nm
\dHjH=0~ (3A»BT//¿ow) - aNm '

M=Q

Therefore, for ferromagnetism to occur we must have the denominator equal to
zero (actually negative values also give ferromagnetism). This means that a must
have a value of

^^ 3¿BT _ (3)(1.38 x 1Q-23)(300)
/z0Nw2 ~ (4?r x 10~7)(9 x 1028)(2 x 1Q-23)2 '
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therefore, for ferromagnetic ordering to occur we must have

a = 274.5.

Exercise 10.4 Saturation magnetization and atomic magnetic moments
For iron: the atomic magnetic moment is m = 2.2 Bohr magnetons =2.04x
10~23Am2, density = 7.9 x 103 kg m~3 and atomic wt. = 56. Therefore the
number of atoms per unit volume N is given by

N = N A x density
u = 6.02xlO*x7-9*1 0 3

atomic weight 56

N = 8.5x 1028m-3.

The saturation magnetization is

Ms=Nm = 1.73 x H^AnT1.

Flux density in toroid

B - //0(H + M) = ¿io(H + 0.5MS)

= //oUOOO + (0.85 x 106))

= 1.0697.

Cross-sectional area A = (0.005)2 m2 = 25 x 10~6 m2. So the total flux is given by

c/) = BA

0-2.67xlO-5Wb.

Exercise 10.5 Saturation magnetization and electron band structure
Given D(EF) = 1-9 x 1049]'1 m~3 and AEex = 5 x 10~21 J the excess number of
electrons in the spin-up band over the spin-down band will be

AN-NJ-N!

- 2D(EF)AEex

AN=190x 1027mT3.

Since each electron has a magnetic moment of m = 9.27 x 10~24, the expected
saturation magnetization will be

Ms = ANm Am'1

= 1.76 x 106Am"1.
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The number of atoms per unit volume is NA — 8.5 x 1028 m~3. Therefore, the net
moment per atom in Bohr magnetons is

m = AN/NA
- 2.23MB,

or in terms of A m2, the net magnetic moment per atom will be

Ms

m = Ñ-,
m-2.07 x 10-23Am2.

Exercise 10.6 Hysteresis and energy dissipation
If the coercivity is 50 A m"1 and the resonance is 0.5T, then to a first
approximation

Area of loop = 2Hc2Br = 100 TA m"1.

Now the base units of Tesla are kgA~ ls~2 . Consequently TAm~2 =
kgm"1 s~2 =Jm~3 . Therefore a first approximation to the hysteresis loss, that is
the energy dissipated per cycle per unit volume, is

WH = 100 JnT3.

The transformer core has the following properties

Area A = 0.25 x 10-4m2

Length t = 0.05 m

Volume V = 1.25 x 10~6m3.

Hysteresis power loss PH is equal to the product of frequency, volume and
hysteresis loss per unit volume:

PH = i/VWH.

At v = 60 Hz this is

PH = 0.0075 W.

This hysteresis loss is not the only power dissipation mechanism. Two other types
of losses occur, both related to eddy currents: classical eddy current losses Pc,
which are due to movement of electrons under a time dependent field, and
'anomalous' losses Pa which are due to domain wall motion.
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magnetostriction, comparison with 337
piezoelectricity, comparison with 337

Electrostrictive coupling coefficient 333
Electrostrictive strain 331
Electrostrictive transducers, frequency

range 338
Empty lattice 91
Emitter current 235-6
Energy, electron

distributions 74-5
levels

in finite square-well potential 71-6
in infinite square-well potential 65-8

wave vector, relationship to 63-4
Energy bands 95-8

curvature and effective mass of electrons
97-8

nomenclature 96-7
origin 93-5

in real space 95-6
width 95

Energy conversion materials 329, 330-1
Energy coupling coefficient 333
Epitaxial growth of semiconductors 242
Erbium doped silica 271
Ettingshausen effect 172
Exchange coupling 213
Exchange energy 214
Exchange field 213
Exciton generation 188, 189
Extended-zone scheme 103
Extinction coefficient 10-11, 184, 186

definition 10-11
physical significance 185-6

External area of Fermi surface 128
Extreme ultraviolet lithography (EUV)

244
Extrinsic semiconductors 139-44

acceptors and donors 140
conductivity 141

Fabrication of microprocessors 240-4
Fabrication of semiconductor devices 248
Failure of classical statistics 72-3
Feature sizes 244-6
Fermi-Dirac function 73-4
Fermi-Dirac statistics 74
Fermi energy 96
Fermi energy level 72
Fermi level, in semiconductors 134
Fermi sphere 116-7
Fermi surface 116-28

for aluminium 123, 123
for copper 123
determining, methods of 124-6
distorted 120-2
extremal area 128
within first zone 120-2
first zone, extending beyond 119-20
for lead 124, 124
in a periodic potential 120-2
reduced-zone scheme 117-20
three-dimensional 122-4
two-dimensional, hypothetical 119-20

Ferroelectric displays 275
Ferroelectric domain walls 340-1
Ferroelectric domains 338, 338-9, 340-1
Ferroelectric hysteresis 338, 339
Ferroelectric materials for data storage 345
Ferroelectric phase 341
Ferroelectrics 338-42

ageing of 343
for data storage 345-6
depolarized 340
paraelectric phase 341
polarized ('poled') 339, 340, 342
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Ferroelectric random access memories 345
Ferroelectric thin films 345
Ferromagnets 206
FET's 238
Fibre, optical 270-2
Fibre optic cables 270
Fibre optic link around the globe (FLAG)

272-3
Fibre optic networks 270-2
Fibre optics 270-2
Fibre optics, data transfer rates 271
Fibre optics, multi mode fibres 271
Fibre optics, optical amplification 271
Fibre optics, single mode fibres 271
Field dependence of magnetization in Pauli

paramagnetism 214-5
Field effect transistors 238-9
Field emission displays 276-7
Finite square-well potential 68-71
Flat band representation 189
Flat panel displays 273
Fluorescence 197-8
Flux counting using a SQUID 293-305
Flux exclusion 285-6

Meissner effect 281
Flux pinning

in superconductors 285-96
in superconducting circuit 287-8

Flux trapping 287
Flying height 309, 310
Force constant 27, 28
Forward biasing of pn junction 151-2,

152
Fourier transform of periodic potential

83-4, 101
FRAM 346-7
Free electron approximation, comparison

with tight binding approximation
93-5

Free electron density of states 135-6
Free-electron Fermi surface 119-20
Free electron wave equation 63-4
Free electrons 63-4, 84-5

parabola 64
Frequencies, wavelengths and photon

energies 185
Fringing field 311

Gallium arsenide 157-8, 198, 229, 249-50
band gap 157
optoelectronics capability 158
properties 158
spread of operation 157

Gallium nitride 259-60
Gallium phosphide 250, 259
Gamma-iron oxide 310
Generation coefficient 333

Germanium, problems with room
temperature leakage current 228

Giant magnetoresistive read heads 319
Gorter-Casimir theory of

superconductivity 282-3
Gruneisen parameters 33

Hagen-Rubens law 12-13
Hall coefficient

definition 148
values 148

Hall effect 146-8
Hall field 146, 147, 147
Hall effect sensors 327
Hall mobility 164
Hard disk capacities 308
Hard disk fabrication 308-9
Hard disks 308-9
Harmonic oscillator (quantum mechanics)

71
Harmonic potential 27-33
Head gap 327
Head-medium clearance 309
Heat capacity

classical theory of 33-4
Debye model 37
Debye T3 law of 35
definition of 13-14
Dulong-Petit law of 34-5
Einstein model 35-7
electronic contribution to 62-3
of electrons

Drude prediction 59
quantum theory 77-8

at high temperatures 40
at low temperatures 40
quantum theory of 35-7
specific heat 14-15, 33-40
variation with temperature 34-5, 35

Heterojunction lasers 269-70
Hexagonal ferrites, recording material 312
High current capacity wires and cables

298-9
High-speed computers 255
High-temperature superconductors 288
Homojunction lasers 269
Hybrid semiconductor/magnetic devices

327
Hysteresis 322
Hysteresis loops of magnetostrictive

materials 336

Impurity level excitation 191
Impurity semiconductors 139-44
Indirect band gaps 131-2
Indirect electron transitions 190-1
Indium nitride 260
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Inductive heads 316, 317
Infinite square-well potential 65-8

boundary conditions 65-8
Infra-red detection 145-6
Injection diodes 263
Insulator to metal transition under pressure

94-5
Insulators and metals, differences between

80-1
Integrated circuits (ICs) 240
Interatomic forces in materials 24-6
Interatomic potential 26-33

anharmonic 32
Interband absorption 188
Interband electron transitions 188,

191-2
Intraband absorption 188-9
Intraband electron transitions 188-9, 193
Intrinsic semiconductors 134-9
Ion-implantation 242
Iron powder 311
Iron-chromium multilayers 326
Itinerant electron model of magnetism in

materials 202-3
Itinerant electron theory of

ferromagnetism 212-13

Josephson effect 296
Josephson junctions 291-2, 291, 296-7,

297
J-vector distribution displacement by

electric field 167

k coefficient for transducers 333
k-space (reciprocal space) 98-106
Kerr effect 314
Kronig-Penney model 88-92

Lambert's law 12-13
Laser diodes 269
Laser light

collimation of 267
phase coherence of 267

Lasers 264-70
applications 270
heterojunction 269-70
homojunction 269
materials 269
semiconductor 269

Lattice symmetry 24-5
Lattice vibration

allowed modes 29-31
boundary conditions 30-1
equivalence of different modes 22-31
number of wave vectors possible in

lattice 31
quantized 29-31

Lead ziroconate titanate (PZT) 339,
343-4, 347

chemical additions 344
variation of coupling coefficient 344

LED's 258
Light detection in semiconductors 264
Light emission

in lasers 265
in LEDs 263-4

Light emitting diodes (LEDs) 254, 257-8
Light generation in semiconductors 264-5
Linear bit density (BPI) 310
Linear lattices 26, 27-8
Linewidths 249
Liquid crystal displays (LCDs) 254, 273,

274, 275
Lithography 244-6
Localized electron model

of ferromagnetism 218-20
of magnetism in materials 202-3

London theory of superconductivity 282
Longitudinal recording media 306, 307
Lorentz force 147

Macroscopic properties
dependence on external influences 5
interrelationships 3-6, 19-20
measurement of 4

Magnetic disks 308-10
Magnetic domains 218
Magnetic field, H 203
Magnetic field strengths in head gap 321,

323
Magnetic induction, B 203
Magnetic materials

applications 220-1
macroscopic classification 204-6
microscopic classification 206-8

Magnetic moments 16
in cobalt 217
in iron 217
in nickel 217
of electrons 202, 206-8
per atom 215

Magnetic order-disorder transistions 208
Magnetic permeability 17, 204

definition 17
values 204

Magnetic properties 17-19
Magnetic random access memories

(MRAM) 326-7
Magnetic recording 303-16

anhysteretic magnetization 319
industry market size 304-6
longitudinal (conventional) 306-7, 307
magnetic properties of materials for

303-4
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Magnetic recording (continued)
materials 310-3
media 304
perpendicular 307, 307-8, 313
principles of 304
read-write head 317-19
reading process 319-20, 324
recording process 317-19
speeds and densities, comparison of 324
storage densities 323-4
writing process 321-3

Magnetic recording heads 316-17
Magnetic recording materials 310-13
Magnetic recording media 303
Magnetic reluctance 320
Magnetic resonance imaging (MRI) 290
Magnetic susceptibility 175-81, 204

definition 16-17
oscillations 126-7
quantum free electron theory 80-1
temperature dependence 4-7, 17,

208-9
values 204

Magnetic tapes 306-308
Magnetic tunnel junctions 327
Magnetism, in materials 205-7
Magnetization 16, 203-4

definition 16
process 220

Magneto optic disks 314
Magneto-optic recording 313-16

access times 313
mechanism 313-14
signal-to-noise ratios 314
storage densities 313

Magnetoelectronics 326
Magnetomechanical effect 335-6
Magnetometers, superconducting 291-2
Magnetomotive force 320
Magnetoreflectance 196
Magnetoresistance 18-9, 126, 170
Magnetoresistive devices 327
Magnetoresistive heads 316, 317, 317,

319
Magnetostriction 335-6
Magnetostrictive coupling coefficient 333
Magnetostrictive strain 335
Magnetostrictive strain coefficient 332
Magnetostrictive transducers 336

frequency range 338
Magnets, superconducting 280
Majority carriers 145
Materials

for optoelectronic devices 257-64
properties, quantum free electron

predictions 76-80
for semiconductor lasers 269

Mean field approximation, with domains
219-20

Mechanical properties 5-6
Meissner effect 281, 283-4, 285-7, 286
Melting points 25, 25
MEM's 347, 348
Metal evaporated tapes 306-8
Metallic spin transistors 239-40
Micro electromechanical machines

(MEM's) 347-8
Microelectronic devices 240-6
Microelectronics 227
Microprocessors 240-1

fabrication 240-9
Microprocessor chip feature sizes 248-9
Microprocessor device densities 241
Microprocessor speed 245
Microscopic electron mobility 164
Minority carrier injection 263
Minority carriers 142
Mobility

of charge carriers 148-9
of electrons 138

Model density of states for square well
75-6

Modeling magnetic recording process 325
Modeling of magnetostrictive transducers

336
Modulation spectroscopy 199-200
Molar heat capacity 15

Nearly free electron approximation 90-1
Néel temperature 206, 207
Nernst effect 171
Nitride semiconductors 260
Noncrystalline materials 169
Non-linear effects in magnetoelastic

materials 336
Non-volatile ferroelectric memories 345
Non-volatile magnetic random access

memories 326
Number density of charge carriers 140
Number density of electrons in conduction

band 136-7
Number density of holes in valence band

136
Number of electrons contributing to

electrical conduction 166

Ohm's law 8, 161-2
Drude theory of 47
quantum corrections 165-7

Operational efficiency 237-8
Optical absorption 12

processes 188
Optical attenuation coefficients 257
Optical communication 270-3
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Optical computers 247
Optical constants n, k, physical significance

185-6
Optical disks 277-8
Optical displays 254
Optical fibres 254

multi-mode 271
single mode 271

Optical functions of materials 254-7
Optical properties 10-13

band structure, influence of 187-93
electrical properties, relationship to 3-5,

12-13
electron band structure, relationship to

115-16
of materials 184-7
n, k, and R, table of 11
of semiconductors 144
thermal properties, relationship with 3-5

Optical pumping 266
Optical reflectance, Drude theory of 53-4
Optoelectronic devices 248
Optoelectronic polymers 258, 262
Optoelectronic silicon 261
Optoelectronics 254-7
Order-disorder transitions 208

Paraelectrics 341
Paramagnets 205
Particle in box, quantum model 65
Particulate tapes 306
Pauli exclusion principle 65, 72
Pauli paramagnetism 210-11
Peltier effect 171
Penetration depth 184-5

in superconductors 287, 287
Periodic zone scheme 117-18
Permalloy 319
Permanent magnetic materials 220
Permittivity 9-10, 168-9
Perpendicular media 313

for magnetic recording 313
Perpendicular recording 307, 308, 313
Phase coherence of laser light 267
Phonons 36, 282
Phosphorescence 197-8
Photoconductivity 145-6
Photodetectors 254, 255
Photodiodes (reverse-biased pn junction)

255
Photoelectric effect 56-8
Photoelectric work function 57-8, 57
Photolithography 244
Photoluminescence 197-9
Photovoltaic cells 248
Piezoelectric effect 334-5, 337
Piezoelectric polarization coefficient 333

Piezoelectric response, speed of 338
Piezoelectric strain 332
Piezoelectric transducers, frequency range

338
Piezoelectricity 334-5

électrostriction, comparison with 337
in ferroelectrics 342
mechanism of 337

Piezomagnetic response, speed of 338
Piezomagnetism 336
Piezoreflectance 196
pn junctions 151-60, 227, 255-6

band structure diagram 231
current/voltage characteristics 231-3

pn junction, dependence of current on
temperature 156-7

pn junction, dependence of current on
voltage 156-7

Polarization 9, 168-9
Polarized ('poled') ferroelectrics 338-9,

342
Poling of ferroelectrics 337
Polymers 167
Population inversion of electron energies

266
Positron annihilation 126
Preisach hysteresis model 325-6
Probability

of electron elevation to conduction band
134, 135

of occupancy of states 72, 72, 73-4
of occurrence of electron 63

Purity of semiconductors 191
PZT 347

Quantization of lattice vibrations 29-31
Quantum corrections to classical theory of

heat capacity 35-7
Quantum efficiency 258
Quantum free electron model

failures 80-1
predictions

of heat capacity of electrons 77-8
of magnetic susceptibility 78-9
of materials properties 76-80
of thermionic emission 79-80

successes 80
Quantum number space (n-space) 75-6
Quantum theory of heat capacity 38-9
Quartz crystal resonator 335

Randall-Wilkins equations 178
Read heads 317, 317
Reading process 316, 324
Read/write head, magnetic recording 309
Reciprocal space (k-space) 98-106
Recoil minor loops 322
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Recombination 144
Recording density 323-4
Recording media 303
Recording process 316-17
Recording tape velocities 325
Reduced-zone scheme 103, 117-18

advantages and disadvantages 118-19
Reflectance 11-12, 112-14

definition 11
dependence on conductivity 11, 13
dielectric coefficients, relationship to

114-16
energy dependence 5
in metals 11
in semiconductors and insulators 11-12
spectra 193-7

of aluminium 193-4, 194
Refractive index 13, 184, 187

definition 10
physical significance 185

Residual electrical resistance 280-1
Resistance 8
Resistivity, electrical 7
Reverse biasing of pn junction, 152, 152,

153
Rigid band model 217-18

Saturation current density 156
Saturation magnetization 220

of recording material 315
Schrodinger wave equation (energy

equation) 63-5, 65
Seebeck effect 170-1
Semiconductor devices 153-55, 230-40

microelectronic 240-6
Semiconductor fabrication, possible

refinements 247-8
Semiconductor junctions 149-58
Semiconductor lasers 254

applications 270
four-level 268
population inversion 266
three-level 267-8
two-level 265

Semiconductor materials 228-30
Semiconductor random access memories

326
Semiconductors

alloy type 229
extrinsic 139-41
impurity 139-41
intrinsic 134-9
lasers 269
light sources 256-7
likely future developments 247-52
n-type 140, 149-57
optical attenuation coefficients 257

optical properties 144
p-type 140, 149-57
purity 191-2
speed of operation 249, 250
temperature dependence of electrical

properties 140-1
Sendust 319
Sensors 329
Shear modulus 5-6
Shockley's equation 156
Shubnikov-de Haas effect 127
Silicon

amorphous 248
leakage current at room temperature

228
resistivity variation with impurity

concentration 228, 229
Silicon carbide 252, 259-260
Silicon nitride 249
Silicon, nanocrystalline 261
Silicon, rare earth doped 261
Silicon-on insulator technology 249
Snell's law 10
Soft ferrites 319
Soft magnetic materials 222
Sommerfeld free electron model 64-71,

86
failures 80-1
successes 80

Source current 238-9
Space charge region 151, 231
Specific heat, temperature dependence 5
Spherical Fermi surface 116-17
Spin polarized electrical currents 327
Spin transistor 327
Spin-up and spin-down half-bands 214
Spontaneous magnetization 220
SQUIDs 280, 291-2

principles of operation 293-5
SQUID magnetometer applications 295
Stimulated emission of light 266-7
Stoner-Wohlfarth hysteresis model 326
Storage densities, for magnetic recording

323-4
Strain 331

derivative 332
hysteresis in 331, 331

Strontium bismuth tantalite (SBT) 347
Superconducting circuit 287-8
Superconducting electronic devices

295-7
Superconducitng energy storage devices

298
Superconducting generators 298, 300
Superconducting magnetometers 291-2
Superconducting magnets 280, 290
Superconducting motors 298, 300
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Superconducting power cables 299
Superconducting tapes 288-9, 297
Superconducting transformers 299-300
Superconducting transition 281-2
Superconducting wires 290, 298-9
Superconductivity 280, 282
Superconductors

applications 289
high-temperature 288
Type I 304
Type II 304

Supercurrent in SQUID magnetometer
291-7

Surface currents in superconductors
274-5

Symmetry points in Brillouin zone 105

Tape lubricants 306
Telecommunications 270-3
Temperature dependence

of charge carrier mobility 162-3
of conductivity

in metals 162-3
in semiconductors 163

of magnetic susceptibility 211-12
of susceptibility 17-18

Temperature independent paramagnetic
susceptibility 212

Terbium-iron-cobalt 315
Thermal conduction mechanism 172-3
Thermal conductivity 13-15, 172

definition 13
Drude theory of 48-50
in insulators 175
in metals 173-5

Thermal excitation of electrons across
band gap 135-7

Thermal properties of materials 13-16,
172-5

Thermo-magnetic magnetization 313-14
Thermionic emission, quantum free

electron theory 79-80
Thermoluminescence 176-7

applications 181
conditions for 176-7
depth of electron traps 180
emission of light on heating 179-80
glow curves 175, 181

location of peaks in 180
intensity of emitted light 180
lifetime of electrons in traps 179
mechanism of 177-8
occupancy of traps in 178
Randall-Wilkins equation 178
Theory of 177-8

Thermoluminescent detectors principle of
operation 182

Thermoreflectance 196
Thin film ferroelectrics 345
Thin metallic films 311-12
Three-five (III-V) semiconductors 229-30,

260
band gaps 229-30

Tight binding approximation 92-5
comparison with free-electron

approximation 93-4
Topical lubricants 309
TPI 323
Track density (TPI) 310, 323
Transducers 329-31

classification 329-30, 330
ferroelectric 342-8
materials considerations 334-8
materials, polycrystalline 339-40
non-linearity 330
performance parameters 331-3
resonance in 330

Transition from insulator to metal
94-5

Transistors 233
band structures 234
biasing 235
characteristics 235-7
current/voltage characteristics 237
development of 227
gain 236

Two-six (II-VI) semiconductors 259
Type I superconductors 284
Type II superconductors 285

Van der Waals forces 25-6
Velocity of wave in lattice 28
Very large-scale integration (VLSI) 240
Video recording 303, 325
Voltage generator coefficient 332-3
Vortex state of superconductor 283-5

Wave equation
for electrons

bound 65-8
in finite square-well potential 68-71

imposition of boundary conditions
64-71

in lattice 30
in one-dimensional periodic potential

86-91
Wave vector space 103
Wave velocity

elastic modulus, relationship to 28-9
in lattice 28-9

Wave vector 63-4
Weiss mean field 218
Weiss theory of ferromagnetism 219
Wide band gap semiconductors 259
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Wiedemann-Franz law 14 YBCO 288
Drude theory of 50-1 Young's modulus 3

Williams-Comstock model 323
Write heads 317, 317 Zinc selenide 259
Writing head efficiency 320-1 Zinc sulphide 259
Writing process 316, 321-3
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